$10 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.09 (brt, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 2.92 (s, 3 H, OCH_{3}), 2.47 (m, 1 H, H-34), $2.41(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16), 2.41$ (dd, $J=16.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.30(\mathrm{dd}, J=13.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14)$, 2.24 (br d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 2.12 (dd, $J=17.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 2.06, 2.03, 1.98 (singlets, 3 H each, $\left.\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}\right), 1.96$ (m, $1 \mathrm{H}, \mathrm{H}-36$), 1.40 (brt, $J=12 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14), 1.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 0.95(\mathrm{~m}, 1 \mathrm{H}$, H-4), 1.15 ($\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, M e-37$), $0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $M e-34), 0.87$ ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, M e-36$), $1.80-1.15$ (m, 8 H total, $\mathrm{H}-4$, $\mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-10, \mathrm{H}-12$), HRMS calcd for $\mathrm{C}_{55} \mathrm{H}_{78} \mathrm{O}_{17} 1010.5239$, found 1010.5274. Phase-sensitive ${ }^{1} \mathrm{H}$ COSY spectra of $\mathbf{3 6 a}$ and $\mathbf{3 6 b}$ were collected by the TPPI method: 512 experiments of 16 scans each; relaxation delay of 1.5 s ; size 1 K data points; spectral width in F1 and F2

6000 Hz ; no zero filling in F 2 , and to l K in F , apodization in both dimensions squared sinebell.

Acknowledgment. We wish to express our many thanks to Dr. C. Cimarusti, The Squibb Institute for Medical Research, for generous samples of amphotericin B and to Professor K. Nakanishi, Columbia University, for his assistance in the CD studies. Our thanks are also due to John Dykins of this department for his superb mass spec assistance and helpful comments. This work was financially supported by the National Institutes of Health, Merck Sharp \& Dohme, and Hoffman-La Roche, Inc.

Total Synthesis of Amphoteronolide B and Amphotericin B. 1. Strategy and Stereocontrolled Construction of Key Building Blocks ${ }^{\dagger}$

K. C. Nicolaou,* R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis, and T. K. Chakraborty
Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Received October 19, 1987

Abstract

The retrosynthetic analysis and strategy for the total synthesis of amphotericin B (1) and amphoteronolide B (2) is discussed. Focusing on subtle and repeated structural units, a retrosynthetic scheme was constructed that led to the recognition of readily available and enantiomerically related compounds as starting materials for the total synthesis of $\mathbf{1}$ and $\mathbf{2}$. Thus, the four key building blocks 8-11 were defined as subtargets and synthesized in optically active forms. Segments 8 and 11 were derived from epoxide 15 , which is readily available from (+)-DET. Segments 9 and 10 were obtained from (+)- and $(-)$-xylose, respectively, or from the prostereogenic allylic alcohol 14 and (-)- and (+)-DET, respectively, via a stereocontrolled sequence based on the Sharpless asymmetric epoxidation reaction. This latter sequence provides a general and flexible entry into the $1,3,5, \cdots(2 n+1)$ polyol series of compounds, reminiscent of substructures occurring in polyene macrolide antibiotics.

Amphotericin B (1) and its aglycon amphoteronolide B (2) represent important synthetic targets, ${ }^{1}$ providing unique opportunities for the development of both new and existing synthetic technologies. Accomplishments in this area may have broad applications to the problem of structure elucidation and eventual total synthesis of the biomedically important polyene macrolide antibiotics. In the preceding paper ${ }^{2}$ we described some chemistry of amphotericin $\mathbf{B}(\mathbf{1})$ culminating in its conversion ${ }^{3.4}$ to its aglycon amphoteronolide $B(2)$. In this series of papers we describe the total synthesis of both amphoteronolide $\mathbf{B}(\mathbf{2})$ and amphotericin B (1). In the present paper we describe the general synthetic strategy and the stereocontrolled construction of the requisite key building blocks ${ }^{5}$ for this undertaking.

Results and Discussion

Strategy and Retrosynthetic Analysis. Our general strategy for the construction of a mphotericin B (1) and its aglycon (2) is presented in Scheme I. The heptaenone 3 was recognized as the key intermediate from which both 1 and 2 could be derived. Thus, stereocontrolled reduction of the carbonyl group of 3 , or of a compound derived from 3, was expected to lead to an amphoteronolide B derivative from which target 2 could be liberated. Glycosidation of amphoteronolide B derivatives derived from 3 with a mycosamine equivalent followed by functional group manipulations was projected as the final sequence toward amphotericin B (1). CPK models of 3 and analogous structures pointed to a stereoselective reduction by peripheral attack, although it was not a priori possible to predict with confidence which of the two possible C -19 epimers would result. ${ }^{2}$ However, if necessary, inversion of configuration at $\mathrm{C}-19$ would correct the sit-

[^0]uation at that stage. Despite the plethora of macrolide-forming reactions ${ }^{6}$ currently at our disposal, the construction of the heptaenone 3 , due to its size and complexity, presented a rather formidable problem. Inspection of 3 revealed two rather obvious strategic bonds for disconnection in the retrosynthetic sense, on the basis of a macrocyclization reaction, namely the lactone linkage and the C-20 double bond.

[^1]Scheme ${ }^{a}$

5

7

8

9

10
11
${ }^{a}$ Structures and retrosynthetic analysis of amphotericin B (1) and amphoteronolide B (2).

On the basis of our past experiences in the macrolide field, and particularly in the 16 -membered ring series exemplified by tylosin, ${ }^{7}$ we projected a keto phosphonate aldehyde condensation as the key macrocyclization step for the construction of 3 . Thus, disconnection of 3 as indicated by the dotted line unravels the long-chain keto phosphonate aldehyde $\mathbf{4}$ as a potential precursor to 3 . The presence of the rather rigid polyene system, the numerous substituents as well as the pyran, and the two acetonide rings in $\mathbf{4}$ was expected to facilitate the cyclization reaction by decreasing the degrees of rotational freedom in this precursor. Proceeding with the retrosynthetic analysis, compound 4 can then be dissected at the indicated ester bond, leading to the two ad-

[^2]vanced intermediates, hydroxy aldehyde 5 and keto phosphonate acid $\mathbf{6}$, and precipitating a convergent strategy. The convergency of the sequence is amplified by the remaining disconnections indicated in Scheme I, leading to the key building blocks 7-11. Thus, sequential coupling of $\mathbf{8}$ with two molecules of $\mathbf{7}$ followed by simple functional group manipulations was expected to lead to 5 , whereas sequential coupling of 9 with 10 and then 11 with appropriate manipulations was to provide the requisite advanced intermediate 6. A requirement we set for the projected strategy was that it should provide the target molecules in their naturally occurring enantiomeric forms.
In the selection of optically active starting materials for the total syntheses at hand, the recognition of important, but subtle symmetry in the molecules of amphotericin B (1) and amphoteronolide B (2) played a crucial role. Scheme II presents a
Scheme 11^{a}

${ }^{a}$ Symmetry recognition and retrosynthetic analysis of amphotericin $\mathrm{B}(\mathbf{1})$ and amphoteronolide $\mathrm{B}(\mathbf{2})$.
retrosynthetic analysis of subtargets 8-11, which focuses on these symmetry elements, allowing the design of a synthetic strategy that utilizes the readily available enantiomers of xylose and tartaric acid as starting materials and/or chiral auxiliaries to secure optically active materials. Thus, following the indicated disconnections in Scheme II, the initially generated key intermediates $8-11$ were further traced back to epoxide $15(8,11 \Rightarrow 15)$, (+)-xylose (12a) (9 12a), and (-)-xylose (12b) (10 $\Rightarrow 12 b)$. Alternatively, intermediates 9 and 10 may be traced back to the enantiomeric tetraol derivatives $13 a$ and $13 b$, respectively. It was further recognized that enantiomerically pure epoxide $\mathbf{1 5}$ is readily available from (+)-DET (diethyltartrate), whereas (-)- and $(+)$-DET can be used as chiral auxiliaries to build the requisite absolute stereochemistry in intermediates 13 a and 13b, respectively, from the prochiral starting material 14 via a Sharpless asymmetric epoxidation. ${ }^{8}$ The numbering in the structures of Scheme II traces the origin of selected carbon centers of amphotericin B (1) and amphoteronolide B (2).

Construction of Building Blocks 8 and 11. Scheme III outlines the stereocontrolled construction of building block 8 from the readily available epoxide $15 .{ }^{9}$ Thus, $\mathbf{1 5}$ was converted to acetonide

[^3]Scheme 111^{a}

$23, R=H, X=S P h$
$1 \Rightarrow 24, R=X=H$
$-20, R_{1}=C O^{\circ} B u, R_{2}=H$
18

${ }^{a}$ Synthesis of building block 8. Reagents and Conditions: (a) Reference 1; (b) 2.0 equiv of PCC, $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~h}, 94 \%$; (c) 0.8 equiv of $17 \mathrm{a}, 0.84$ equiv of $n-\mathrm{Bu}_{2} \mathrm{BOTf}, 0.96$ equiv of $i-\operatorname{Pr}_{2} \mathrm{EtN}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $-78^{\circ} \mathrm{C}$, add $17,1.5 \mathrm{~h}, 72 \%$; (d) 2.2 equiv of $\mathrm{LiBH}_{4}, \mathrm{THF},-40$ to $-30^{\circ} \mathrm{C}, 4 \mathrm{~h}, 100 \%$; (e) 2.0 equiv of $t-\mathrm{BuCOCl}$, pyridine, $0-25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$; (f) 1.5 equiv of $t-\mathrm{BuMe}_{2} \mathrm{OTf}, 2.0$ equiv of 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 97 \%$; (g) AcOH-THF- $\mathrm{H}_{2} \mathrm{O}, 45$ ${ }^{\circ} \mathrm{C}, 45 \mathrm{~h}, 72 \%$; (h) 1.55 equiv of $\mathrm{PhSSPh}, 1.5$ equiv of n - $\mathrm{Bu}_{3} \mathrm{P}, 0-25$ ${ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 95 \%$; (i) Raney $\mathrm{Ni}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 98 \%$; (j) 1.1 equiv of dihydropyran, CSA catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 96 \%$; (k) 2.5 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 98 \%$; (l) 2.0 equiv of $\mathrm{PCC}, 5.0$ equiv of $\mathrm{NaOAc}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 75 \%$.
alcohol 16 according to our previously described sequence ${ }^{9}$ and thence to aldehyde 17 by oxidation (PCC, 94% yield). Aldehyde 17 was then condensed with the boronenolate derived from oxazolidone 17 a according to Evans' procedure ${ }^{10}\left(n-\mathrm{Bu}_{2} \mathrm{BOTf}, i\right.$ $\mathrm{Pr}_{2} \mathrm{EtN}$) to give adduct 18 in 72% yield and ca. $11: 1$ stereoselectivity. ${ }^{11}$ Reduction of this mixture (18) to the diol $19\left(\mathrm{LiBH}_{4}\right)$ followed by selective pivaloate ester formation ($t-\mathrm{BuCOCl}-\mathrm{Pyr}$) led to compound $\mathbf{2 0}$ in 90% overall yield as a mixture of diastereoisomers. At this stage the major product (20) was chromatographically separated from the minor diastereoisomer (silica, 50% ether in petroleum ether, $R_{\mathrm{f}} \mathrm{s} 0.45$ (major) and 0.32 (minor)). The structure of the major aldol product was as expected on the basis of Evans' results ${ }^{12}$ and was confirmed by its conversion to intermediate $\mathbf{2 4}$, identical with a sample obtained from amphotericin B (1) by degradation. ${ }^{1}$ Thus, silylation of 20 (t $\mathrm{BuMe}_{2} \mathrm{SiOTf}, 2,6$-lutidine) gave 21 (97%), followed by sequential deacetonization ($\mathrm{AcOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 2: 1: 1$), selective phenylsulfide formation ($\mathrm{PhSSPh}-n-\mathrm{Bu}_{3} \mathrm{P}$) and desulfurization (Raney Ni) to give compounds 22 (72%), 23 (95%), and 24 (98%), respectively. The tetrahydropyranyl (THP) ether 25 was then prepared from 24 (dihydropyran, CSA) in 96% yield. Finally, deprotection of the primary alcohol of $\mathbf{2 5}$ by DIBAL reduction (98%) followed by PCC oxidation (75%) led to the desired building block 8 via intermediate 26.

[^4]
a Synthesis of building block 11. Reagents and Conditions: (a) 2.5 equiv of $\mathrm{Et}_{2} \mathrm{AlC} \equiv \mathrm{CCH}_{2} \mathrm{OSi}-t-\mathrm{BuPh}_{2}$, hexane-toluene, $-78 \rightarrow 0{ }^{\circ} \mathrm{C}$, $0.5 \mathrm{~h}, 85 \%$; (b) 1.2 equiv of $\mathrm{NaH}, 1.2$ equiv of $\mathrm{PhCH}_{2} \mathrm{Br}$, THF, $0-25$ ${ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%$; (c) 1.5 equiv of $\mathrm{Bu}_{4} \mathrm{NF}$, THF, $0-25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 87 \%$; (d) 1.7 equiv of $\mathrm{Red}^{\mathrm{Al}}, \mathrm{Et}_{2} \mathrm{O}, 0-25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 93 \%$; (e) 2.3 equiv of C $\mathrm{H}_{2}=\mathrm{CHMgBr}, 1.0$ equiv of $\mathrm{Cul}, \mathrm{THF},-78 \rightarrow 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91 \%$; (f) 1.3 equiv of $\mathrm{NaH}, 1.3$ equiv of $\mathrm{PhCH}_{2} \mathrm{Br}$, THF, $0 \rightarrow 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 93 \%$; (g) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.3$ equiv $\mathrm{MeOH},-78^{\circ} \mathrm{C}$ and then 10 equiv of $\mathrm{Me}_{2} \mathrm{~S},-78$ $\rightarrow 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$, and then 0.5 equiv of $\mathrm{Ph}_{3} \mathrm{P}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 100 \%$; (h) 1.5 equiv of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}$, benzene, $25{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 85 \%$ (trans); (i) 2.2 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 93 \%$; (j) 1.5 equiv of $(-)$ DET, 2.2 equiv of TBHP, 1.2 equiv of $\mathrm{Ti}(i-\mathrm{PrO})_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 16$ h and then tartaric acid, 75%; (k) 3.5 equiv of Red-Al, THF, $0^{\circ} \mathrm{C}, 4$ $\mathrm{h}, 96 \%$; (1) 2.9 equiv of $t-\mathrm{BuMe}_{2} \mathrm{SiCl}, 3.0$ equiv of imidazole, DMF, $0-25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (m) $\mathrm{H}_{2}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, 95%; (n) 2.5 equiv of $\mathrm{PhCH}(\mathrm{OMe})_{2}$, CSA catalyst, benzene, $25^{\circ} \mathrm{C}, 1$ $\mathrm{h}, 80 \%$; (o) 6.0 equiv of $\mathrm{SO}_{3} \cdot \mathrm{pyr}, 10.0$ equiv of $\mathrm{Et}_{3} \mathrm{~N}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 94 \%$.

The synthesis of building block 11 from epoxide 15^{9} was effectively accomplished as shown in Scheme IV. The key intermediate 30 was reached via two alternative pathways. In the first approach the epoxide 15 was reacted with [[(tert-butyldiphenylsilyl)oxy]propargyl]diethylalane ($\mathrm{Et}_{2} \mathrm{AlC} \equiv \mathrm{CCH}_{2} \mathrm{OSi}-t$ $\left.\mathrm{BuPh}_{2}\right)^{13}$ to afford acetylenic alcohol 27 in 85% yield, which was benzylated $\left(\mathrm{NaH}, \mathrm{PhCH}_{2} \mathrm{Br}, 91 \%\right)$ and subsequently desilylated (n - $\mathrm{Bu}_{4} \mathrm{NF}, 95 \%$) leading to 29 via 28. Stereoselective reduction of $\mathbf{2 9}$ with excess Red-Al (Aldrich) led to the trans allylic alcohol 30 in 97% yield. The second approach to intermediate 30 began with opening of epoxide $\mathbf{1 5}$ by employing vinylmagnesium bromide in the presence of cuprous iodide to afford hydroxy olefin 31 in quantitative yield. Benzylation of this alcohol $\left(\mathrm{NaH}, \mathrm{PhCH}_{2} \mathrm{Br}\right.$, 90%) followed by ozonolysis-reduction $\left(\mathrm{O}_{3}\right.$ then $\mathrm{Me}_{2} \mathrm{~S}$ and $\mathrm{Ph}_{3} \mathrm{P}$, 100%) led to aldehyde 33 via intermediate 32. Without purification, aldehyde 33 was subjected to a Wittig olefination ($\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}$) to give the $E-\alpha, \beta$-unsaturated ester 34 in 85% yield. The accompanying Z isomer of 34 (ca. 15% yield) was conveniently separated from 34 at this stage by chromatography. With compound $\mathbf{3 0}$ in hand, conversion to subtarget 11 was ef fected as follows. Reduction of 34 with DIBAL led cleanly (93% yield) to the desired intermediate 30. Sharpless asymmetric epoxidation of $\mathbf{3 0}[(-)$-DET] smoothly furnished epoxide 35 in 82% yield (single isomer isolated). Regioselective epoxide opening of 35 with Red-A ${ }^{14}$ (97%) followed by silylation (t $\mathrm{BuMe}_{2} \mathrm{SiCl}$-imidazole, 89%) and debenzylation led to compound 38 via intermediates 36 and 37 . The key engagement of the

1,3-diol system in 38 as a six-membered benzylidene ${ }^{15}$ was carried out with $\mathrm{PhCH}(\mathrm{OMe})_{2}$ under acid catalysis (CSA) in benzene solution, giving 39 (80%), which was then smoothly oxidized to the subtarget 11 by means of $\mathrm{SO}_{3} \cdot \mathrm{Pyr}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{DMSO}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (94% yield).

Construction of Building Blocks 9 and 10. The Carbohydrate Approach. As the retrosynthetic analysis of Scheme II shows, a potential route to building blocks 9 and 10 involves (+)- and $(-)$-xylose (12a and 12b, respectively) as starting materials. The required transformations involve proper functionalization of the carbohydrate framework and deoxygenation at C-3 as detailed in Scheme V. Thus, 12a was converted to its monoacetonide 40a by diacetonization followed by selective removal of the more labile six-membered ring acetonide, ${ }^{16}$ in 50% overall yield, and thence to the monosilyl ether 41a by exposure to slightly over stoichiometric amounts of $t-\mathrm{BuPh}_{2} \mathrm{SiCl}$ in the presence of imidazole in DMF (96% yield). Deoxygenation of 41a at C-3 was then achieved by one of two ways. The first method involved preparation of derivative 42a (PhOC(S)Cl-Pyr, DMAP, 94\%) and its radical-mediated deoxygenation ${ }^{17}\left(n-\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AlBN}\right)$ to afford 43a (77% yield). The second method for the conversion of 41a to $43 a$ involved reductive cleavage (Superhydride, 90% yield) of iodide 59a (Scheme V) prepared from 41a via the corresponding triflate ${ }^{18}$ (80% overall yield). The liberation of lactol 44 from 43a required the use of $\mathrm{BCl}_{3}{ }^{19}$ at $-78^{\circ} \mathrm{C}(90 \%)$. Subsequent condensation of lactol 44 with methylenetriphenylphosphorane ($\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, generated from $\mathrm{CH}_{3} \mathrm{PPh}_{3}{ }^{+} \mathrm{Br}^{-}$and n-BuLi in THF) to form olefin 45 proceeded in optimum yield (67%) when 44 was first treated with NaH (1.0 equiv). Engagement of the 1,3 -diol system of $\mathbf{4 5}$ as an acetonide furnished 46 in 90% yield, while hydroboration-oxidation ($\mathrm{Sia}_{2} \mathrm{BH}-\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$) of the terminal olefin in $\mathbf{4 6}$ gave primary alcohol 47 (88% yield). Installment of a benzyl ether in 47 ($\mathrm{KH}-\mathrm{PhCH} 2 \mathrm{Br}, 85 \%$) followed by desilylation (n - $\mathrm{Bu}_{4} \mathrm{NF}, 96 \%$) led to compound 49 via 48 . Finally, oxidation of 49 with $\mathrm{SO}_{3} \cdot \mathrm{Pyr}^{2}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{DMSO}$ system led to the desired building block 9 in 75% yield.

The synthesis of key intermediate 10 from (-)-xylose (12b) proceeded, in its initial stages, along similar lines as the above described construction of 9 . Thus, $\mathbf{1 2 b}$ was converted to 43b via intermediates 40b-42b exactly as described for 12a \rightarrow 43a. By use of standard chemistry, the silyl protecting group in 43b was exchanged for a benzyl group, leading to intermediate 51 via 50 ($96 \times 95 \%$). Deacetonization of 51 under acid conditions ($\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O} / \mathrm{DME}$) gave lactol 52 in 75% yield, which was subjected to the methylenation-acetonization reaction sequence described above for the conversion $\mathbf{4 4} \boldsymbol{\rightarrow 4 6}$, to afford olefin acetonide 54 via 1,3-diol 53 (67-90\%). Hydroboration of 54 as described above for $\mathbf{4 6} \rightarrow \mathbf{4 7}$ led to primary alcohol 55 in 88% yield. Standard methods then allowed the formation of silyl ether 56 (92\%), alcohol 57 ($\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, 98 \%$ yield), and methyl ester $58\left(\mathrm{NaIO}_{4}-\mathrm{RuO}_{4}\right.$ catalyst, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CCl}_{4}-\mathrm{H}_{2} \mathrm{O}^{20}$ and then $\mathrm{CH}_{2} \mathrm{~N}_{2}, 76 \%$ overall yield). Finally, reaction of methyl ester 58 with $\mathrm{LiCH}_{2} \mathrm{P}(\mathrm{O})(\mathrm{OMe})_{2}$ furnished the desired keto phosphonate 10 in 96% yield.

Construction of Building Blocks 9 and 10. The Sharpless Asymmetric Epoxidation Approach. Inspection of the structures of several members of the polyene macrolide class, ${ }^{21}$ including amphotericin $B(1)$, reveals molecular fragments belonging to the series of $1,3,5, \cdots(2 n+1)$ polyols. In order to provide a general and flexible solution to the problem of constructing such com-
(15) For previous selective six-membered ring benzylidene formation, see: (a) Sinclair, H. B. Carbohydr. Res. 1969, 12, 150. (b) Ziegler, F. E.; Gilligan, P. J. Tetrahedron Lett. 1979, 20, 3371. (c) Schubert, T.; Welzel, P. Angew. Chem., Int. Ed. Engl. 1982, 21, 137.
(16) Levene, P. A.; Raymond, A. L. J. Biol. Chem. 1933, 102, 317
(17) Robins, M. J.; Wilson, J. S. J. Am. Chem. Soc. 1981, 103, 932.
(18) Binkley, R. W.; Ambrose, M. G.; Hehemann, D. G. J. Org. Chem. 1980, 45, 4387.
(19) Tewson, T. J.; Welch, M. J. J. Org. Chem. 1978, 43, 1090.
(20) Carlsen, H. J.; Katsuki, T.; Martin, V. S.; Sharpless K B I. Org. Chem. 1981, 46, 3938.
(21) See for example: Macrolide Antibiotics, Chemistry, Biology and Practice: Omura, S., Ed.; Academic: New York, 1984.

Scheme V^{a}

${ }^{a}$ Construction of building blocks 9 and 10 from (+)- and (-)-xylose 12a and 12b. Reagents and Conditions: (a) Reference 15 ; (b) 1.1 equiv of $t-\mathrm{BuPh}_{2} \mathrm{SiCl}, 4.0$ equiv of imidazole, DMF, $0-25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 94 \%$; (c) 1.5 equiv of $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}, 2.6$ equiv of pyr, DMAP catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 15$ $\mathrm{h}, 94 \%$; (d) 1.1 equiv of $n-\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AlBN}$ catalyst, toluene, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}, 77 \%$; (e) 1.0 equiv of $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ($1: 2$), $-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 90 \%$; (f) 1.0 equiv of NaH , and then 3.0 equiv of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ (from $\mathrm{CH}_{3} \mathrm{PPh}_{3}{ }^{+} \mathrm{Br}^{-}$and $n-\mathrm{BuLi}$ in THF), THF, $-20 \rightarrow 2{ }^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 67-70 \%$; (g) $\mathrm{Me} \mathrm{C}_{2} \mathrm{C}-$ (OMe) ${ }_{2}$, CSA catalyst $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 88-90 \%$; (h) 2.2 equiv of $\mathrm{Sia}_{2} \mathrm{BH}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$, and then $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$ workup, $86-93 \%$; (i) 1.3 equiv of KH , 1.3 equiv of $\mathrm{PhCH}_{2} \mathrm{Br}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 14 \mathrm{~h}, 85 \%$; (j) 1.1 equiv of $n-\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 0-25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 92 \%$; (k) 5.0 equiv of $\mathrm{SO}_{3} \cdot \mathrm{pyr}, 5.0$ equiv of $\mathrm{Et}_{3} \mathrm{~N}$, 0.3 M in DMSO- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1), 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; (1) 1.3 equiv of $\mathrm{NaH}, 1.1$ equiv of $\mathrm{PhCH} \mathrm{C}_{2} \mathrm{Br}, 0.01$ equiv of $n-\mathrm{Bu} \mathrm{m}_{4} \mathrm{Nl}, \mathrm{THF}, 0-25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$; (m) dilute $\mathrm{HCl}, \mathrm{DME}_{-\mathrm{H}_{2} \mathrm{O}}^{(2: 1)}$, reflux, $1 \mathrm{~h}, 95 \%$; (n) 1.1 equiv of $t-\mathrm{BuMe} \mathrm{M}_{2} \mathrm{SiCl}, 4.0$ equiv of imidazole, DMF, $0-25^{\circ} \mathrm{C}, 1^{+} \mathrm{h}, 92 \%$; (o) $\mathrm{H}, 20 \%$ $\mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}, 25^{\circ} \mathrm{C}, 98 \%$; (p) 5.0 equiv of $\mathrm{NalO}_{4}, \mathrm{RuO}_{4}$ catalyst, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CCl}_{4}-\mathrm{H}_{2} \mathrm{O}(2: 2: 3), 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$, and then $\mathrm{CH}_{2} \mathrm{~N}_{2}$, 76% overall; (q) 2.2 equiv of $(\mathrm{MeO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Li}, \mathrm{THF},-78 \rightarrow 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$.
pounds with stereochemical control, we set out to engineer a sequence based on the powerful asymmetric epoxidation reaction developed by Sharpless. ${ }^{8}$ We expected such a sequence to be useful, not only for attacking the problem at hand, but also in other structural and synthetic studies, particularly in the polyene macrolide series. Scheme VI outlines the designed sequence, ${ }^{22}$ starting from readily available allylic alcohols (I). Thus Sharpless asymmetric epoxidation (AE) on I would lead to epoxide II (or its enantiomer, if so desired), which could easily be transformed to compound III by oxidation-olefination. This latter operation was anticipated to differentiate between the two epoxide carbons, rendering the one adjacent to the double bond more susceptible to nucleophilic attack by hydride. Thus reductive opening of III as indicated in Scheme VI was to lead, upon concomitant ester reduction, to diol IV. Protection of the secondary hydroxyl in IV, followed by a second Sharpless AE reaction would then furnish epoxide V (or its epimer, at will). Regio- and stereocontrolled reductive opening at V , utilizing $\mathrm{Red}-\mathrm{Al}$ as reducing agent, followed by appropriate manipulations, was finally expected to form 1,3,5 polyol systems VI (or any of its stereoisomers, at will). Reiteration would form higher homologues VII, as desired. This

[^5]Scheme V1 ${ }^{a}$

${ }^{a}$ General approach to $(2 n+1)$ polyol systems.
scheme proved to be a highly flexible and viable entry into a variety of such systems, including the requisite fragments 9 and 10 for the total synthesis of amphoteronolide B (2) and amphotericin B (1).

Scheme Vlla

${ }^{a}$ Construction of building blocks 9 and 10 from butanediol derivative 14. Reagents and Conditions: (a) 1.1 equiv of (-)-DET, 1.1 equiv of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}, 2.1$ equiv of $\mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-23^{\circ} \mathrm{C}, 5 \mathrm{~h}$, and then $\mathrm{Me}_{2} \mathrm{~S}$, tartaric acid, 75%; (b) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}$ and then $\mathrm{NEt}_{3}, 98 \%$; (c) 1.1 equiv of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}$, benzene, $16 \mathrm{~h}, 77 \%$; (d) 5.9 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, $-78{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, and then $\mathrm{MeOH}, 82 \%$; (e) 1.2 equiv of $t-\mathrm{BuCOCl}$, pyridine, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 95 \%$; (f) 1.3 equiv of t - $\mathrm{BuPh} \mathrm{S}_{2} \mathrm{SiCl}, 5.3$ equiv of imidazole, $\mathrm{DMF}, 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 96 \%$; (g) 1.4 equiv of DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 87-91 \%$; (h) 1.1 equiv of (-)-DET, 1.1 equiv of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}, 2.0$ equiv of TBHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 60 \%$ ($9: 1$ mixture of isomers); (i) 2.0 equiv of Red-Al, THF, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 85 \%$; (j) 1.4 equiv of $t-\mathrm{BuCOCl}$, DMAP catalyst, pyridine, $25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 88 \%$; (k) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{CSA}$ catalyst $25^{\circ} \mathrm{C}$, $05 \mathrm{~h}, 93-95 \%$; (1) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}^{2} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (m) 1.1 equiv of t - $\mathrm{BuPh}_{2} \mathrm{SiCl}, 4.5$ equiv of imidazole, DMF, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$ from 69; (n) 1.0 equiv of t - $\mathrm{BuMe} \mathbf{2}_{2} \mathrm{SiCl}, 4.2$ equiv of imidazole, DMF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; (o) see Scheme V.

Scheme VII details the constructions of $\mathbf{9}$ and $\mathbf{1 0}$ according to the above general method. The allylic alcohol 14 on Sharpless asymmetric epoxidation ($(-)$-DET) gave epoxide $\mathbf{6 0} \mathbf{a}^{23,24}$ in 75% yield and 99:1 enantioselectivity. Swern oxidation $\left((\mathrm{COCl})_{2}-\right.$ DMSO-Et ${ }_{3} \mathrm{~N}, 98 \%$) of $\mathbf{6 0 a}$, followed by Wittig reaction, gave olefin 62a (93% yield, $E: Z=84: 16$) via aldehyde 61a. The crucial regioselective epoxide opening (attack at carbon adjacent to double bond), necessary for the success of this method, was cleanly effected with DIBAL, leading to the monoprotected intermediate 66 a via (i) temporary protection of the primary hydroxyl as a pivaloate ester ($63 \mathrm{a} \rightarrow \mathbf{6 4 a}, t$-BuCOCl-Pyr, 95%), (ii) silylation of the secondary hydroxyl ($64 \mathrm{a} \rightarrow 65 \mathrm{a}, t-\mathrm{BuPh}_{2} \mathrm{SiCl}$-imidazole, 96%), and (iii) DIBAL-induced deprotection of the primary OH group ($65 \mathrm{a} \rightarrow \mathbf{6 6 a}, 90 \%$). Reiteration of the Sharpless asymmetric epoxidation reaction on allylic alcohol 66a ((-)-DET) led to epoxide 67a (60% yield, ca. $91: 9$ stereoselectivity). Regioselective opening of epoxide 67a with Red-Al, then led directly to the free triol 13a (85%). Selective pivaloate ester formation (slightly over stoichiometric amounts of t - $\mathrm{BuCOCl}-\mathrm{Pyr}, 88 \%$) at the primary alcohol in 13a led to 68a, which was then converted to acetonide $69\left((\mathrm{MeO})_{2} \mathrm{CMe}_{2}, 93 \%\right)$ and thence to 70 (debenzylation, 85%), 71 (silylation, 85%), and 47 (pivaloate cleavage, 91%). Compound 47 was then converted to key building block 9 according to the sequence described above (Scheme V). With use of (+)-DET as the chiral auxiliary in the Sharpless asymmetric epoxidation and via the same sequence described above, 13b, the enantiomer of 13a, was synthesized from the same prostereogenic allylic alcohol

[^6](24) Hungerbuhler, E.; Seebach, D. Helv. Chim. Acta 1981, 64, 687.

14 via intermediates 60b-67b as shown in Scheme VII. Silylation (t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$-imidazole, 90%) of 13b followed by acetonization ($(\mathrm{MeO})_{2} \mathrm{CMe}_{2}, 95 \%$) gave compound 56 via 68b. Building block 10 was then generated from 56 according to the sequence described above (Scheme V).

Conclusion

In this paper, amphotericin B (1) and amphoteronolide B (2) are discussed as synthetic targets. With the focus on subtle and repeated structural units, a retrosynthetic scheme was devised that led to the recognition of readily available and enantiomerically related compounds as starting points for a total synthesis of both amphotericin B (1) and amphoteronolide B (2). Thus, four key building blocks (8-11) were defined as subtargets and synthesized in optically active forms. Fragments $\mathbf{8}$ and $\mathbf{1 1}$ were derived from epoxide 15, itself available from (+)-DET. Fragments 9 and 10 were obtained from $(+)$ - and $(-)$-xylose, respectively, or from the prostereogenic allylic alcohol 14 and (-)- and (+)-DET, respectively, via a sequence based on the Sharpless asymmetric epoxidation reaction.
The latter sequence was engineered so as to provide a flexible entry into the $1,3,5, \cdots(2 n+1)$ polyol series of compounds reminiscent of segments occurring in polyene macrolide antibiotics. The method, which, in principle, could provide all possible stereoisomers of any member of the above series, may be useful in constructing such segments for synthetic and/or structural studies in this field.
The described chemistry set the stage for the total synthesis of both amphotericin B (1) and its aglycon, amphoteronolide B (2). The following two papers ${ }^{3,4}$ describe the completion of these two projects.

Experimental Section

General Methods. See ref 2.
[$\left.R-\left(R^{*} S^{*}\right)\right]-\alpha, 2,2-T r i m e t h y l-1,3-d i o x o l a n e-4-a c e t a l d e h y d e ~(17)$. $\left[R-\left(R^{*} R^{*}\right)\right]-\alpha, 2,2$-Trimethyl-1,3-dioxolane-4-ethanol (16) (1.4 g, 8.75 mmol) was dissolved in freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(44 \mathrm{~mL})$. Dry 4 A molecular sieves (1.5 g) were added, followed by freshly recrystallized PCC ($3.76 \mathrm{~g}, 17.50 \mathrm{mmol}$), and the reaction mixture was stirred for 2.5 h . The resulting mixture was then poured onto dry ether (300 mL) and filtered through Florisil. The solid residue was thoroughly washed with dry ether The ether was removed in vacuo at $0^{\circ} \mathrm{C}$, and the resulting aldehyde $\mathbf{1 7}$ $(1.3 \mathrm{~g}, 94 \%$, essentially pure) was utilized in the next step without further purification. 17: colorless oil; $R_{f} 0.44$ (silica, 50% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+22.8^{\circ}\left(c 5.2, \mathrm{CHCl}_{3}\right)$; 1 R (film) $\nu_{\text {max }}$ 2995, 2940, 2880, 2730,1730 (CHO), 1460, 1382, 1373, 1255, 1215, 1160, 855, 790, 730 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$, $4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 4.13$ (dd, $\left.J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.73$ (dd, $\left.J=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.42,1.37$ (singlets, 3 H each, acetonides), 1.08 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); HRMS (Cl) calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3}+\mathrm{H}$ 159.1177, found $159.1157(\mathrm{M}+\mathrm{H})$.
($4 R, 5 S$)-3-[2,4-Dideoxy-2,4-dimethyl-5,6-O-(1-methylethylidene)-L-altronoyl]-4-methyl-5-phenyl-2-oxazolidinone (18). (4R,5S)-3-Propionyl-4-methyl-5-phenyloxazolidone ($\mathbf{1 7 a})^{10}(1.53 \mathrm{~g}, 6.57 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (13 mL) under an argon atmosphere, and the solution was cooled to $0^{\circ} \mathrm{C}$. Freshly prepared n - Bu_{2} BOTf $(1.9 \mathrm{~g}, 6.93$ mmol) was slowly added with stirring, followed by the addition of $i-$ $\operatorname{Pr}_{2} \mathrm{EtN}(1.02 \mathrm{~g} \equiv 1.37 \mathrm{~mL}, 7.88 \mathrm{mmol})$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h to ensure complete enolization. This solution was then cooled to $-78^{\circ} \mathrm{C}$, and a solution of aldehyde $17(1.30 \mathrm{~g}, 8.23 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise. Stirring was continued for 0.5 h at $-78^{\circ} \mathrm{C}$ and for 1.5 h at room temperature. The reaction was then quenched by addition of pH 7 phosphate buffer (10 mL). The mixture was extracted with ether $(2 \times 150 \mathrm{~mL})$, and the combined ether extracts were washed with brine ($2 \times 30 \mathrm{~mL}$) and concentrated in vacuo. The crude oil, so obtained, was dissolved in methanol (20 mL) and cooled to $0^{\circ} \mathrm{C}$. Hydrogen peroxide ($30 \%, 7 \mathrm{~mL}$) was added, and stirring was continued for 2 h at the same temperature. Water (15 mL) was added, and the milky mixture was concentrated in vacuo to remove most of the methanol. The residue was extracted with ether ($2 \times 150 \mathrm{~mL}$), washed with 5% aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine (50 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation and purification by flash column chromatography (50% ether in petroleum ether) afforded the pure aldol adduct 18 ($1.85 \mathrm{~g}, 72 \%$), 18: colorless foam; $R_{f} 0.39$ (silica, 75% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+14.1^{\circ}\left(c 0.32, \mathrm{CHCl}_{3}\right) ; \mathrm{R}$ (film) $\nu_{\max } 3470,3060,3030$, $2980,2930,2880,1780,1695,1450,1365,1340,1220,1190,1145,1115$, 1060, 1020, $980,955,855,760,725,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.29(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{PhCHO}), 4.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCH}), 4.20-3.60(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}, \mathrm{CHO}$, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right), 1.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.42,1.37$ (singlets, 3 H each, acetonide), $1.22\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.89\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; HRMS (Cl) calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{6}+\mathrm{H}$ 392.2073, found $392.2078(\mathrm{M}+\mathrm{H})$

2,4-Dideoxy-2,4-dimethyl-5,6-O-(1-methylethylidene)-L-altritol (19). Aldol adduct 18 ($2.74 \mathrm{~g}, 7.0 \mathrm{mmol}$) was dissolved in freshly distilled THF (23.4 mL) and was stirred under an argon atmosphere while being cooled to $-40^{\circ} \mathrm{C}$. LiBH_{4} ($336 \mathrm{mg}, 15.4 \mathrm{mmol}$) was added in one portion, and stirring was continued at $-40^{\circ} \mathrm{C}$ for 4 h , after which the reaction was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The reaction mixture was concentrated in vacuo to remove most of the THF. The residue was extracted with EtOAc ($3 \times 150 \mathrm{~mL}$), and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and evaporation gave crude diol $19(1.53 \mathrm{~g}, 100 \%)$, which was used for the next step without purification. 19: colorless oil; $R_{f} 0.26$ (silica, ether); $[\alpha]^{25} \mathrm{D}+3.33^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\max } 3405,2995$, $2930,1455,1380,1370,1260,1215,1157,1057,985,857,790,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22-3.55\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right)$, 2.72 (br s, $1 \mathrm{H}, \mathrm{OH}), 1.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 1.37,1.33$ (singlets, 3 H each, acetonide), $0.92\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}); HRMS (Cl) calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H} 219.1597$, found 219.1596 $(M+H)$.

2,4-Dideoxy-2,4-dimethyl-5,6-O-(1-methylethylidene)-L-altritol 2,2Dimethylpropanoate (20). Diol 19 ($1.53 \mathrm{~g}, 7.0 \mathrm{mmol}$) was dissolved in dry pyridine (8.7 mL), flushed with argon, and stirred at $0^{\circ} \mathrm{C}$. Trimethylacetyl chloride ($1.69 \mathrm{~g} \equiv 1.73 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was slowly added, the cooling bath was removed, and stirring was continued for 4 h at room temperature. The reaction mixture was diluted with ice-water (50 mL) and transferred to a separatory funnel. The aqueous phase was extracted with ether ($3 \times 100 \mathrm{~mL}$), and the combined extract solution was washed with saturated aqueous $\mathrm{CuSO}_{4}(3 \times 50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, and brine (50 mL). Drying over MgSO_{4}, filtration, evaporation, and purification by flash column chromatography
(silica, 40% ether in petroleum ether) yielded pivaloate ester $20(1.90 \mathrm{~g}$, 90%). 20: colorless oil; $R_{f} 0.45$ (silica, 50% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+11.0^{\circ}\left(c 0.69, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}($ film $) \nu_{\max } 3520,2970,2930,2870$, 1725 (s, $\mathrm{C}=\mathrm{O}$) $, 1477,1455,1395,1375,1365,1280,1210,1155,1055$, $990,855 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ó $4.15-3.52(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CHO}$, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right), 1.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.42,1.36$ (singlets, 3 H each, acetonide), $1.18(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.89\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C} H_{3}\right)$, $0.72\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;$ HRMS (CI) caled for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5}+\mathrm{H}$ 303.2171, found $303.2175(M+H)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5}$: C , $63.55 ; \mathrm{H}, 9.99$. Found: C, 63.37 ; H, 10.08 .

2,4-Dideoxy-3-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-dimethyl-5,6-\boldsymbol{O}-(1-methylethylidene)-L-altritol 2,2-Dímethylpropanoate (21). Alcohol $20(2.9 \mathrm{~g}, 9.6 \mathrm{mmol})$ and dry 2,6-lutidine ($2 \mathrm{~mL}, 19.2 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), under argon, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this stirred solution, was slowly added, t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}$ $(3.8 \mathrm{~g} \equiv 3.3 \mathrm{~mL}, 14.4 \mathrm{mmol})$, the cooling bath was removed, and stirring was continued at room temperature for 0.5 h . The reaction mixture was then diluted with ether (250 mL) and washed with 5% aqueous NaHCO_{3} solution (30 mL), $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, and brine ($2 \times 50 \mathrm{~mL}$). Drying (MgSO_{4}) followed by concentration and purification by flash column chromatography (silica, 10% ether in petroleum ether) gave silyl ether $21(3.87 \mathrm{~g}, 97 \%) .21$: colorless oil; $R_{f} 0.48$ (silica, 20% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+2.5^{\circ}\left(c 0.6, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}$ (film) $\nu_{\text {max }} 2960,2930$, $2885,2860,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1480,1470,1460,1380,1370,1280,1250$, $1210,1155,1060,1050,1035,850,835,770,735,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06-3.80\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 4.60(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHO}), 2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.38,1.33$ (singlets, 3 H each, acetonide), $1.22(\mathrm{~s}, 9 \mathrm{H}, t-B u), 0.91\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 0.91 (s, $9 \mathrm{H}, \mathrm{Si}-t-B u), 0.87$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 0.06 (s, 6 H , $\mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H} \mathrm{417.3036}$, found 417.3051 ($\mathrm{M}+\mathrm{H}$).

2,4-Dideoxy-3-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-dimethyl-Laltritol 2,2-Dimethylpropanoate (22). Acetonide 21 ($1.7 \mathrm{~g}, 4.1 \mathrm{mmol}$) was dissolved in $\mathrm{AcOH}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}(2: 1: 1,50 \mathrm{~mL})$ and stirred at $45^{\circ} \mathrm{C}$ under argon for 4.5 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, and the organic phase was washed with 50% aqueous $\mathrm{NaHCO}_{3}(5 \times 50 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and brine (50 mL). Drying (MgSO_{4}) followed by concentration and flash column chromatography (silica, 50% ether in petroleum ether) provided diol 22 ($1.11 \mathrm{~g}, 72 \%$). 22: colorless oil; $R_{f} 0.14$ (silica, 50% ether in petroleum ether); $[\alpha]^{25}{ }_{D}+16.2^{\circ}$ (c $0.13, \mathrm{CHCl}_{3}$); 1R (film) $\nu_{\text {max }} 3440,2960,2930,2890,2860,1727$ (s, $\mathrm{C}=\mathrm{O}), 1480,1460,1390,1360,1285,1250,1155,1105,1050,1030$, $940,912,835,770,730,670 \mathrm{~cm}^{-1} ;{ }^{1} \cdot \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.00$ (dd, $J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.88(\mathrm{dd}, J=10.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.84-3.44 (m, 5 H, CHO, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{OH}\right), 2.64$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H), 1.22(\mathrm{~s}, 9 \mathrm{H}, t-B u), 0.95(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}), 0.93(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}), $0.14,0.10$ (s, 3 H each, $\mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}$ + H 377.2724 , found $377.2734(\mathrm{M}+\mathrm{H})$.

2,4-Dideoxy-3-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-dimethyl-6-S-phenyl-6-thio-L-altritol 2,2-Dimethylpropanoate (23). Diol 22 (774 mg , 2.0 mmol) was dissolved in freshly distilled THF (2.6 mL). Phenyl disulfide ($696 \mathrm{mg}, 3.1 \mathrm{mmol}$) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$ under argon. $n-\mathrm{Bu}_{3} \mathrm{P}(607 \mathrm{mg} \equiv 0.747 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added with stirring, the cooling bath was removed, and the reaction mixture was stirred at room temperature for 6 h . Evaporation of the solvent followed by flash column chromatography (silica, 10% ether in petroleum ether) gave sulfide 23 ($920 \mathrm{mg}, 95 \%$). 23: colorless oil; $R_{f} 0.42$ (silica, 20% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+71.0^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\text {max }}$ 3510, 3060, 2960, 2930, 2860, 1727 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1585, 1485, 146S, 1390, $1285,1255,1155,1105,1045,1025,935,835,770,730,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.15(\mathrm{~m}, 5 \mathrm{H}$, aromatic), 4.04-3.60 (m, $4 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 3.30 (dd, $J=14.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}$), 2.88 (dd, $\left.J=14.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right) 2.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $1.20(\mathrm{~s}, 9 \mathrm{H}, t-B u), 0.95-0.86\left(15 \mathrm{H}, \mathrm{Si} t-\mathrm{Bu}, \mathrm{CH}_{3}\right), 0.07$ (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{SSi} 468.2724$, found $468.2720\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{SSi}$: $\mathrm{C}, 64.06 ; \mathrm{H}, 9.46 ; \mathrm{S}, 6.84$. Found: C , 64.12; H, 9.52; S, 6.72.
(2S,3R,4S,5S)-3-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]-2,4-di-methyl-1,5-hexanediol 1-(2,2-Dimethylpropanoate) (24). Compound 23 ($637 \mathrm{mg}, 1.36 \mathrm{mmol}$) was dissolved in absolute $\mathrm{EtOH}(5.3 \mathrm{~mL})$ and stirred at $60^{\circ} \mathrm{C}$ under argon. Freshly prepared Raney Ni (2 g in 15 mL EtOH) was added in portions, and stirring was continued for 2 h . After cooling, the catalyst was filtered off (Celite) and washed thoroughly with ethanol and dry ether. Evaporation of the solvents gave essentially pure 24 ($480 \mathrm{mg}, 98 \%$). 24: colorless oil; $R_{f} 0.23$ (silica, 20% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+11.8^{\circ}\left(c 3.22, \mathrm{CHCl}_{3}\right)$; 1 R (film) $\nu_{\max } 3490,2960$, 2930, 2900, 2860, 1720 (s, C=O), 1480, 1460, 1395, 1385, 1360, 1285, $1250,1150,1030,940,830,810,770,665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}) $\delta 4.07-3.65\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.0$
(m, $1 \mathrm{H}, \mathrm{CH}$), $1.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.20(\mathrm{~s}, 9 \mathrm{H}, t-B u), 1.14(\mathrm{~d}, J=6.0$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.91(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si} \cdot t-B u)$, $0.82\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.11,0.09$ (s, 3 H each, $\mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 361.2774$, found $361.2758(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}$: C, $63.28 ; \mathrm{H}, 11.18$. Found: $\mathrm{C}, 63.10 ; \mathrm{H}$, 11.37.
($2 S, 3 R, 4 S, 5 S$)-3-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]-2,4-di-methyl-5-[(tetrahydro-2H-pyran-2-yl)oxy]-1-hexanol 1-(2,2-Dimethylpropanoate) (25). To a solution of alcohol $24(3.61 \mathrm{~g}, 10 \mathrm{mmol})$ and freshly distilled dihydropyran ($0.925 \mathrm{~g} \equiv 1.0 \mathrm{~mL}, 11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon was added camphorsulfonic acid (CSA, $116 \mathrm{mg}, 0.5 \mathrm{mmol}$). After being stirred for 0.5 h at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous NaHCO_{3} solution $(20 \mathrm{~mL})$ and extracted with ether (30 mL). The organic extract was washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash column chromatography (silica, 10% ether in petroleum ether) gave tetrahydropyranyl ether 25 as a mixture of two anomers ($4.27 \mathrm{~g}, 96 \%$). 25 (mixture of anomers, ca. 1:1): colorless oil; $R_{f} 0.32$ and 0.37 (silica, 10% ether in petroleum ether); $[\alpha]^{20} \mathrm{D}+30.2^{\circ}\left(c 2.48, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}$ $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 2960,2930,2860,1725(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1485,1380,1290,1260$, $1160,1030,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.63,4.53$ (multiplets, ca. $1: 1$ ratio, $1 \mathrm{H}, \mathrm{OCHO}$), $4.01-3.38\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$, $\mathrm{CHO}), 2.10-0.95\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.18(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.10,1.00$ (doublets, $J=6.4 \mathrm{~Hz}, \mathrm{ca} .1: 1$ ratio, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.89,0.88,0.85$ (singlets, 12 H total, $\left.\mathrm{CH}_{3}, \mathrm{Si}-t-\mathrm{Bu}\right), 0.79\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.04,0.03$ (singlets, ca. $1: 1$ ratio, 6 H total, $\mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{24}{ }^{-}$ $\mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H} 445.3349$, found $445.3282(\mathrm{M}+\mathrm{H})$.
(2S,3R,4S,5S)-3-[[(1,1-Dimethylethyl)dimethylsily $]$ oxy]-2,4-di-methyl-5-[(tetrahydro-2H-pyran-2-yl)oxy]-1-hexanol (26). To a stirred solution of pivaloate ester $25(4.0 \mathrm{~g}, 9.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL ($22.5 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 22.5 $\mathrm{mmol})$ dropwise under argon. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h before quenching with $\mathrm{MeOH}(1 \mathrm{~mL})$. The reaction mixture was diluted with ether (50 mL) and shaken with saturated aqueous sodiumpotassium tartrate solution (40 mL) until the organic layer became clear. The organic phase was then washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Flash column chromatography (silica, 40% ether in petroleum ether) gave alcohol 26 as a mixture of two anomers ($3.18 \mathrm{~g}, 98 \%$). 26 (mixture of anomers, ca. $1: 1$): colorless oil; $R_{f} 0.27$ and 0.34 (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+4.4^{\circ}(c 3.62$, CHCl_{3}) $1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3450,3000,2960,2940,2900,2860,1475$, $1470,1385,1255,1130,1080,1025,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, CDCl_{3}) $\delta 4.60-3.30\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}, \mathrm{OH}\right), 1.95-0.95(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2}, \mathrm{CH}$), $1.14,1.08$ (doublets, $J=6.1 \mathrm{~Hz}$, ca. $1: 1$ ratio, $3 \mathrm{H}, \mathrm{CH}_{3}$), $0.89-0.78$ (m, $15 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}, \mathrm{CH}_{3}$), $0.06,0.05,0.04$ (singlets, 6 H total, $\mathrm{Si} \mathrm{Me}_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 361.2774$, found $361.2762(\mathrm{M}+\mathrm{H})$.
(2S,3R,4S,5S)-3-[[(1,1-Dimethylethyl) dimethylsilyl]oxy]-2,4-di-methyl-5-[(tetrahydro-2H-pyran-2-yl)oxy]-1-hexanol (8). To a stirred solution of alcohol $26(3.065 \mathrm{~g}, 8.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(42 \mathrm{~mL})$ were added sequentially powdered and freshly dried 4A molecular sieves (3.6 g), anhydrous $\mathrm{NaOAc}(3.486 \mathrm{~g}, 42.5 \mathrm{mmol})$, and freshly recrystallized PCC ($3.664 \mathrm{~g}, 17 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$ under argon. After being stirred for 2.5 h at room temperature, the reaction mixture was poured onto dry ether (200 mL) and filtered through Florisil. The filter cake was washed thoroughly with dry ether. The filtrate was concentrated in vacuo, and the residue was flash chromatographed (silica, 20% ether in petroleum ether) to give the rather labile aldehyde 8 as a mixture of two anomers ($2.285 \mathrm{~g}, 75 \%$), which was used immediately in the next step. 8 (mixture of anomers, ca. 1:1): colorless oil; $R_{f} 0.35$ and 0.42 (silica, 20% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-70.0^{\circ}\left(c 2.56, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }}$ $2960,2940,2900,2860,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1470,1390,1260,1150,1080$, $1030,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67,9.66$ (singlets, ca. 1:1 ratio, $1 \mathrm{H}, \mathrm{CHO}$), 4.60-3.35 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}$), 2.60-2.40 (m, $1 \mathrm{H}, \mathrm{CHC}(\mathrm{O})), 2.00-1.30\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.18-1.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.88-0.82\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}, \mathrm{CH}_{3}\right), 0.04$ to -0.05 (singlets, 6 H , total, $\mathrm{Si} M e_{2}$).
(2R,3R)-6-[[(1,1-Dimethylethyl)silyl]oxy]-2-(phenylmethoxy)-3-[(phenylmethoxy)methyl]-4-hexyn-2-ol (27). To a solution of (tert-butyldiphenylsilyl) propargyl ether $(1.47 \mathrm{~g}, 5 \mathrm{mmol})$ in dry hexane (10 mL) was added $n-\mathrm{BuLi}$ ($3.13 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in hexane, 5 mmol), and the mixture was stirred at $-78^{\circ} \mathrm{C}$ under argon. Diethylaluminum chloride $(2.8 \mathrm{~mL}, 25 \%$ solution in toluene, 5 mmol) was added dropwise to the reaction mixture, and the resulting milky white solution was warmed to $-40^{\circ} \mathrm{C}$. Epoxide $15(0.568 \mathrm{~g}, 2 \mathrm{mmol})$ in 3 mL toluene was added via syringe. After 30 min , the reaction was quenched with saturated aqueous NaHCO_{3} solution and diluted with ether (20 mL) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic phase was separated, and the aqueous layer was extracted with ether ($2 \times 20 \mathrm{~mL}$). The combined organic solution was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and
concentrated. Purification by flash column chromatography (silica, 10% EtOAc in petroleum ether) gave pure alcohol $27(0.989 \mathrm{~g}, 85 \%)$. 27: colorless oil; $R_{f} 0.32$ (silica, 20% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-8.6^{\circ}$ (c 2.5, MeOH); 1R (film) $\nu_{\max } 3480,3060,3020,2920,2840,2240,1580$, $1500,1470,1460,1420,1360,1250,1200,1100,1000,900,820,720$, $690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.71-7.20(\mathrm{~m}, 20 \mathrm{H}$, aromatic), $4.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH} \mathrm{C}_{2} \mathrm{O}\right), 4.29\left(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.90-3.51(m, 5 H, CH2O, CHO), $3.02(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.87$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 1.04(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-B u)$; HRMS (Cl) calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$ $+\mathrm{NH}_{4} 596.3197$, found $596.3166\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.
(4R,5R)-2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-5,6-bis(phenyl-methoxy)-4-[(phenylmethoxy)methyl]-2-hexyne (28). $\mathrm{NaH}(80 \mathrm{mg}, 50 \%$ dispersion in oil, 1.66 mmol) was portionwise added to a solution of alcohol $27(0.80 \mathrm{~g}, 1.38 \mathrm{mmol})$ in dry $\mathrm{THF}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The cooling bath was removed, and stirring was continued at room temperature for 0.5 h . The mixture was again cooled to $0^{\circ} \mathrm{C}$, and benzylbromide ($0.28 \mathrm{~g} \equiv 0.197 \mathrm{~mL}, 1.66 \mathrm{mmol}$) was added dropwise. Stirring was continued at room temperature for 16 h , and then the reaction was quenched by pouring onto precooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and ether $(10 \mathrm{~mL})$. The organic phase was separated, and the aqueous phase was extracted with ether $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, $5 \% \mathrm{EtOAc}$ in petroleum ether) gave ether $28(0.88 \mathrm{~g}, 95 \%)$. 28: colorless oil; $R_{f} 0.38$ (silica, 10% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+0.26^{\circ}(c 3.2, \mathrm{MeOH})$; 1 R (film) $\nu_{\text {max }} 3060,3020,2920,2840,1600,1500,1475,1470,1450$, $1425,1365,1200,1100,1020,820,730,690,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 7.70(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}$, aromatic), $7.40-7.21\left(\mathrm{~m}, 21 \mathrm{H}\right.$, aromatic), $4.70\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, $4.50\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.31\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.79-3.58$ (m, $\left.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.04(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (Cl) calcd for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}+\mathrm{NH}_{4} 686.3666$, found $686.3658\left(\mathrm{M}+\mathrm{NH}_{4}\right)$.
($4 R, 5 R$)-5,6-Bis (phenylmethoxy) -4-[(phenylmethoxy) methyl]-2-hex-yn-1-ol (29). $n-\mathrm{Bu}_{4} \mathrm{NF}(1.95 \mathrm{~mL}, 1 \mathrm{M}$ solutions in THF, 1.95 mmol) was slowly added to a solution of $28(0.87 \mathrm{~g}, 1.3 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The cooling bath was removed, and stirring was continued at room temperature for 3 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and diluted with ether (10 mL). The organic phase was separated, and the aqueous phase was extracted with ether (3 $\times 10 \mathrm{~mL}$). The combined organic solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and brine (5 mL) and dried (MgSO_{4}). Concentration followed by flash column chromatography (silica, 30\% EtOAc in petroleum ether) gave alcohol $29(0.49 \mathrm{~g}, 87 \%)$. 29: colorless oil; R_{f} 0.33 (silica, 30% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-3.5^{\circ}$ (c 1.5, MeOH); IR (film) $\nu_{\max } 3410,3060,3020,2900,2860,2220,1500,1450$, 1360, 1200, 1100, 1050, 910, 730, $690 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}, TMS $) \delta 7.40-7.25(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $4.68(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.80-3.61 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}$), 3.03 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$), 2.24 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$; HRMS (Cl) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{4}+\mathrm{H} 431.2220$, found $431.2200(\mathrm{M}+\mathrm{H})$.
($4 R, 5 R$)-5,6-Bis (phenylmethoxy)-4-[(phenylmethoxy) methyl]-2-hex-en-1-ol (30). To a solution of Red-A1 $(0.5 \mathrm{~mL}, 3.4 \mathrm{M}$ solution in toluene, $1.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ was slowly added alcohol $29(0.43 \mathrm{~g}, 1.0$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was gradually warmed up to room temperature over 3 h with stirring and then quenched with $1 \mathrm{~N} \mathrm{HCl}(4 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic phase was separated, and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. The combined organic solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$ and brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification by flash column chromatography (silica, 30% EtOAc in petroleum ether) gave olefin $\mathbf{3 0}(0.42 \mathrm{~g}, 93 \%)$. 30: colorless oil; $R_{f} 0.18$ (silica, 30% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-9.0^{\circ}$ (c 1.0 , MeOH); IR (film) $\nu_{\max } 3600,3440,3100,3080,3040,2915,2860,1610$, $1590,1500,1480,1460,1360,1210,1100,1030,970,910,735,700,680$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.40-7.20(\mathrm{~m}, 15 \mathrm{H}$, aromatic), 5.68 (m, 2 H , olefinic), 4.73 ($\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), $4.54\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.44(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.02\left(\mathrm{t}, J=4.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 3.76-3.50\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$, $\mathrm{CHO}), 2.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H), 1.4(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ; \mathrm{HRMS}(\mathrm{Cl})$ calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4}+\mathrm{H} 433.2379$, found $433.2350(\mathrm{M}+\mathrm{H})$.
(2R,3R)-2-(Phenylmethoxy)-3-[(phenylmethoxy)methyl]-4-penten-2-ol (31). Dry $\mathrm{Cu} 1(17.5 \mathrm{~g}, 39.5 \mathrm{mmol})$ was added to a solution of epoxide $15(11.0 \mathrm{~g}, 40.0 \mathrm{mmol})$ in dry THF (160 mL), and the mixture was stirred at $-78^{\circ} \mathrm{C}$ under argon. Vinylmagnesium bromide ($92 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 92 mmol) was dropwise added over a period of 30 min . The cooling bath was removed, and the stirred reaction mixture was allowed to reach $0^{\circ} \mathrm{C}(0.5 \mathrm{~h})$ and then poured onto precooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (200 mL) and ether (100 mL). The organic phase was separated, and the aqueous phase was extracted with ether (3
$\times 150 \mathrm{~mL}$). The combined organic solution was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) and brine (100 mL), dried (MgSO_{4}), and concentrated. Purification by flash column chromatography (silica, $10 \% \mathrm{EtOAc}$ in petroleum ether) gave pure olefin $31(11.4 \mathrm{~g}, 91 \%) .31$: colorless oil; $R_{f} 0.33$ (silica, 20% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ $-29.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\max } 3530,3400,3060,3020,2900$, $2860,1640,1600,1500,1450,1360,1200,1100,1020,910,730,690$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.32(\mathrm{~m}, 10 \mathrm{H}$, aromatic), 5.75 (ddd, $J=17.5,10.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.15 (dd, $J=17.5,2.2$ $\mathrm{Hz}, 1 \mathrm{H}$, olefinic), 5.12 (dd, $J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $4.60-4.50$ (m, $4 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 3.92 (m, $1 \mathrm{H}, \mathrm{CHO}$), 3.62 (dd, $J=7.6,3.3 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.55 (dd, $\left.J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.45$ (dd, $J=10.0$, $\left.8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.10(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$; HRMS (Cl) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}+\mathrm{H} 313.1804$, found $313.1777(\mathrm{M}+$ H).
(3R,4R)-4,5-Bis (phenylmethoxy)-3-[(phenylmethoxy)methyl]-1-pentene (32). A solution of alcohol $31(43.7 \mathrm{~g}, 140 \mathrm{mmol})$ in dry THF was slowly added over a period of 1 h to a stirred suspension of $\mathrm{NaH}(8.4 \mathrm{~g}$, 50% dispersion in oil, 182 mmol) in dry THF (280 mL) at $0^{\circ} \mathrm{C}$ and under argon. The cooling bath was removed, and stirring was continued at room temperature for an additional 1 h . The mixture was recooled to $0^{\circ} \mathrm{C}$, and benzylbromide ($28.7 \mathrm{~g} \equiv 20 \mathrm{~mL} ; 175 \mathrm{mmol}$) was added dropwise. Stirring was continued at room temperature for 16 h , and then the reaction was quenched by pouring onto precooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL) and ether (100 mL). The organic solution was separated, and the aqueous phase was extracted with ether ($3 \times 150 \mathrm{~mL}$). The combined organic phase was washed with brine (100 mL), dried (MgSO_{4}), and concentrated. Flash column chromatography (silica, 5% EtOAc in petroleum ether) gave compound 32 ($52.34 \mathrm{~g}, 93 \%$). 32: colorless oil; $R_{f} 0.37$ (silica, 10% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-5.8^{\circ}$ (c $1.0, \mathrm{MeOH}$); lR (film) $\nu_{\max } 3060,3020,2900,2860,1640,1600,1500$, 1450, 1355, 1200, 1100, 1020, 910, 730, 690, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 7.32$ ($\mathrm{m}, 15 \mathrm{H}$, aromatic), 5.85 (ddd, $J=17.5$, $10.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.15 (dd, $J=17.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.12 (dd, $J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $4.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.55\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, 4.48 (s, $2 \mathrm{H}, \mathrm{CH} \mathrm{Ph}^{2}$), 3.80-3.48 (m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{CHO}$), 2.75-2.60 (m, $1 \mathrm{H}, \mathrm{CH}$); HRMS (Cl) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}+\mathrm{H} 403.2273$, found $403.2236(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}: \mathrm{C}, 80.55 ; \mathrm{H}, 7.51$ Found C, 80.84; H, 7.74.
(2R,3R)-3,4-Bis(phenylmethoxy)-2-[(phenylmethoxy)methyl]-1-butanal (34) via 33. Terminal olefin 32 ($50 \mathrm{~g}, 122 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and $\mathrm{MeOH}(1.6 \mathrm{~mL}, 36.6 \mathrm{mmol})$ and cooled to $-78^{\circ} \mathrm{C}$. Ozone was passed through the solution until a faint blue color appeared. Dimethyl sulfide ($\mathrm{Me}_{2} \mathrm{~S}, 1.8 \mathrm{~mL}, 12.2 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$, and the reaction mixture was allowed to reach room temperature and stirred for 3 h , and, then $\mathrm{Ph}_{3} \mathrm{P}(10 \mathrm{~g}, 38.1 \mathrm{mmol})$ was portionwise added to complete the ozonide reduction. Concentration of the mixture followed by azeotropic drying with benzene ($2 \times 100 \mathrm{~mL}$) and addition of benzene $(200 \mathrm{~mL})$ gave a solution of aldehyde 33 , which was reacted, without purification, with $\mathrm{Ph}_{3} \mathrm{P}=$ CHCOOEt ($63.7 \mathrm{~g}, 183 \mathrm{mmol}$) at room temperature and under argon. After stirring for 16 h , the reaction mixture was diluted with 5% ether in petroleum ether (300 mL). The precipitate was filtered off and thoroughly washed with 5% ether in petroleum ether $(400 \mathrm{~mL})$. The filtrate was concentrated, and the residue was flash chromatographed (silica, $10 \% \mathrm{EtOAc}$ in petroleum ether) to give olefin 34 ($49.9 \mathrm{~g}, 85 \%$). 34: colorless oil; $R_{f} 0.19$ (silica, 10\% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-8.6^{\circ}$ ($c 1.0, \mathrm{MeOH}$); IR (film) $\nu_{\text {max }} 3060$, 3020, 2900, 2860, 1720, 1650, 1600, 1580, 1500, 1450, 1430, 1355, 1260, 1200, $1170,1100,1020,900,730,690,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.32-7.21(\mathrm{~m}, 15 \mathrm{H}$, aromatic), 6.97 (dd, $J=15.6,8.9$ $\mathrm{Hz}, 1 \mathrm{H}$, olefinic), 5.92 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 4.68 (d, $J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 4.50 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 4.48 (s, 2 H , $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82-3.45(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 2.91-2.78 (m, $1 \mathrm{H}, \mathrm{CH}$); HRMS (Cl) calcd C_{29} $\mathrm{H}_{32} \mathrm{O}_{5}+\mathrm{H} 461.2328$, found $461.2412(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 75.61 ; \mathrm{H}, 7.00$. Found: C, 75.47 ; H, 7.03 .

Preparation of Compound 30 from 34. Ester 34 ($54 \mathrm{~g}, 111 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(350 \mathrm{~mL})$ under argon and cooled to $-78^{\circ} \mathrm{C}$. To the stirred solution was added DlBAL ($244 \mathrm{~mL} ; 1 \mathrm{M}$ solution in toluene; 244 mmol) dropwise, and stirring was continued for 30 min . The reaction mixture was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$ and poured into a separatory funnel containing saturated sodium potassium tartrate solution (300 mL). After shaking, the organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 150 \mathrm{~mL}$). The combined organic extract was washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, 30\% EtOAc in petroleum ether) gave allylic alcohol $30(44.6 \mathrm{~g}, 93 \%)$. This material was identical with the compound obtained via acetylenic intermediate 27 by the usual criteria.

4,5-Anhydro-3-deoxy-3-[(phenylmethoxy)methyl]-1,2-bis-O-(phenylmethyl) galactitol (35). Allylic alcohol 30 ($12.5 \mathrm{~g}, 28.7 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (287 mL) and cooled to $-20^{\circ} \mathrm{C}$ under argon. To this stirred solution were sequentially added (-)-diethyltartrate (8.88 $\mathrm{g} \equiv 9.14 \mathrm{~mL}, 43.1 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(9.79 \mathrm{~g} \equiv 10.2 \mathrm{~mL}, 34.4 \mathrm{mmol})$, and $t-\mathrm{BuOOH}\left(5.68 \mathrm{~g} \equiv 21.0 \mathrm{~mL}, 3.4 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 63.1 \mathrm{mmol}\right)$. The reaction mixture was kept at $-20^{\circ} \mathrm{C}$ for 16 h , quenched at that temperature with 10% aqueous tartaric acid solution (75 mL), and vigorously stirred for 1 h at $-20^{\circ} \mathrm{C}$ and then for 1 h at $25^{\circ} \mathrm{C}$. The resulting precipitate was filtered off (Celite), and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration followed by concentration gave an oily residue, which was diluted with ether (250 mL), cooled to $0^{\circ} \mathrm{C}$, and treated with NaOH solution ($1 \mathrm{~N}, 80 \mathrm{~mL}$). The two-phase mixture was vigorously stirred at $0^{\circ} \mathrm{C}$ for 30 min , and the organic phase was then separated and washed with aqueous $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 25$ mL), and finally brine (50 mL). Drying (MgSO_{4}), concentration, and flash column chromatography (silica, 30% EtOAc in petroleum ether) gave epoxide 35 ($9.65 \mathrm{~g}, 75 \%$). 35: colorless oil; $R_{f} 0.31$ (silica, 40% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+13.6^{\circ}$ (c 0.73, MeOH); IR (film) $\nu_{\text {max }} 3460,3080,3060,3030,2940,2860,1600,1580,1500,1480,1450$, $1360,1200,1100,1020,900,730,690,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , benzene- d_{6}, TMS $) \delta 7.40-7.05(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $4.82(\mathrm{~d}, J=11.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}, \mathrm{O}), 4.37(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.19 (s, $2 \mathrm{H}, \mathrm{PhCH} \mathrm{P}_{2} \mathrm{O}$), 4.05 (m, $1 \mathrm{H}, \mathrm{CHO}$), 3.75-3.50 (m, $\left.5 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.06$ (dd, $J=8.6,2.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$ epoxide), 2.83 (m, $1 \mathrm{H}, \mathrm{C} H$ epoxide), $1.89-1.81$ (m, 1 H , CH), 1.61 (br s, $1 \mathrm{H}, \mathrm{OH}$); HRMS (Cl) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}+\mathrm{H}$ 449.2328 , found $449.2321(M+H)$.

3,5-Dideoxy-3-[(phenylmethoxy)methyl]-1,2-bis- O-(phenylmethyl)-L-arabino-hexitol (36). A solution of epoxide $35(20 \mathrm{~g}, 44.3 \mathrm{mmol})$ in dry THF (50 mL) was slowly added to a cold $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of Red-Al ($46 \mathrm{~mL}, 3.4 \mathrm{M}$ solution in toluene, 156 mmol) in dry THF (80 mL) under argon. Stirring was continued at $0^{\circ} \mathrm{C}$ for 4 h , and the reaction mixture was quenched with aqueous $\mathrm{HCl}(2 \mathrm{~N}, 71 \mathrm{~mL})$. The solution was diluted with ether (200 mL), the organic phase was separated, and the aqueous phase was reextracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extract was washed with saturated aqueous NaHCO_{3} solution ($2 \times 50 \mathrm{~mL}$) and brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, $40 \% \mathrm{EtOAc}$ in petroleum ether) gave diol 36 ($19.0 \mathrm{~g}, 96 \%$), 36: colorless oil; $R_{f} 0.14$ (silica, 40% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-5.7^{\circ}$ ($c 0.87$, MeOH); IR (film) $\nu_{\text {max }} 3500,3080,3060,3020,2920,2860,1600,1580,1500$, $1450,1360,1200,1100,1020,730,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , benzene- d_{6}, TMS), $\delta 7.27-7.04(\mathrm{~m}, 15 \mathrm{H}$, aromatic), 4.67 (d, $J=11.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.48\left(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{P}_{2} \mathrm{O}\right), 4.31(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.23 (d, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.17$ (d, $J=12.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.15-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1$ H, CHO), $3.84-3.48\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right), 2.94(\mathrm{dd}, J=5.9,3.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H), 1.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$; HRMS (Cl) calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{5}+\mathrm{H} 451.2484$, found $451.2480(\mathrm{M}+$ H). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{5}: \mathrm{C}, 74.66, \mathrm{H}, 7.65$. Found $\mathrm{C}, 75.08 ; \mathrm{H}$, 7.85

3,5-Dideoxy-4,6-bis-O-[(1,1-dimethylethyl)dimethylsilyl]-3-[(pheny]-methoxy)methyl]-1,2-bis- O-(phenylmethyl)-L-arabino-hexitol (37), t $\mathrm{BuMe}_{2} \mathrm{SiCl}(5.9 \mathrm{~g}, 39.2 \mathrm{mmol})$ was portionwise added to a stirred solution of diol $36(6.1 \mathrm{~g}, 13.5 \mathrm{mmol})$ and imidazole ($2.8 \mathrm{~g}, 41.1 \mathrm{mmol}$) in dry DMF (40 mL) at room temperature under argon. The reaction mixture was stirred at ambient temperature for 16 h and then it was diluted with ether (200 mL) and $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL}$). After shaking, the organic phase was separated and washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (50 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration followed by flash column chromatography (silica, 2% EtOAc in petroleum ether) gave silyl ether 37 ($9.5 \mathrm{~g}, 92 \%$). 37: colorless oil; $R_{f} 0.43$ (silica, $5 \% \mathrm{EtOAc}$ in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-7.0^{\circ}(c 0.73, \mathrm{MeOH}) ; 1 \mathrm{R}$ (film) $\nu_{\text {max }} 3080,3060,3020$, $2940,2920,2850,1600,1560,1500,1485,1475,1470,1460,1390,1360$, 1250, 1100, 1040, 1020, 940, 830, 770, 730, $700,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , benzene- d_{6}, TMS) $87.35-7.05(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $4.70(\mathrm{~d}$, $\left.J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.53\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.40$ (s, $2 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 4.31 (s, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 3.92 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.83-3.66 (m, 6 H, CHO, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.9(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 0.95 (s, $\left.18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}\right), 0.13,0.08,0.04$, and 0.02 (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{O}_{5} \mathrm{Si}_{2}+\mathrm{H} 679.4215$, found $679.4246(\mathrm{M}+\mathrm{H})$.

3,5-Dideoxy-4,6-bis- O-[(1,1-dimethylethyl)dimethylsilyl]-3-(hydroxy-methyl)-L-arabino-hexitol (38). Tribenzyl ether 37 ($7.3 \mathrm{~g}, 10.7 \mathrm{mmol}$) was dissolved in absolute $\mathrm{EtOH}(50 \mathrm{~mL})$, and $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(1.0 \mathrm{~g}$, Pearlman's catalyst) was added with stirring at $25^{\circ} \mathrm{C}$. The reaction mixture was degassed by aspirator suction and argon flushing, and then hydrogen was introduced via a balloon. Stirring for 0.5 h followed by filtration through a Celite pad (washing with ether, 300 mL) gave a
solution of the product, which was washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and brine (30 mL). Drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$) followed by concentration gave essentially pure triol 38 ($4.1 \mathrm{~g}, 95 \%$). 38: colorless oil; $R_{f} 0.21$ (silica, 40\% EtOAc in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-14.7^{\circ}(c 1.0, \mathrm{MeOH}) ; 1 \mathrm{R}$ (film) $\nu_{\max } 3400$ $(\mathrm{s}, \mathrm{OH}), 3080,3060,3040,2950,2930,2880,2860,1470,1460,1380$, $1360,1250,1100,1030,1000,830,770,700,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , benzene- d_{6}, TMS) $\delta 4.20-3.60\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}\right.$), 3.85 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.64(\mathrm{br}$ s, $1 \mathrm{H}, \mathrm{OH}), 0.89(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}-t-B u), 0.11-0.05$ (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}_{2}+\mathrm{H} 409.2806$, found $409.2799(\mathrm{M}+\mathrm{H})$. Anal. Caled for $\mathrm{C}_{19} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}_{2}: \mathrm{C}, 55.84 ; \mathrm{H}, 10.86$. Found: C, 56.13; H, 11.00 .
[$\left.2 R-\left[2 \alpha, 4 \alpha, 5 \beta, 5\left(S^{*}\right)\right]\right]-5-[1,3-\mathrm{Bis}[[(1,1$-dimethylethyl) dimethylsilyl]-oxy]propyl]-2-phenyl-1,3-dioxane-4-methanol (39). To a stirred solution of triol $38(3.0 \mathrm{~g}, 7.4 \mathrm{mmol})$ in dry benzene (28 mL) under argon was sequentially added benzaldehyde dimethylacetal ($2.8 \mathrm{~mL}, 18.4 \mathrm{mmol}$) and camphorsulfonic acid ($46 \mathrm{mg}, 0.07 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at ambient temperature for 30 min and then diluted with ether (150 mL). The solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine (30 mL) and then dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration followed by flash chromatography (silica, 10% EtOAc in petroleum ether) gave alcohol $39(2.9 \mathrm{~g}, 80 \%)$. 39: colorless oil; $R_{f} 0.33$ (silica, 20% EtOAc in petroleum ether); $[\alpha]^{20}{ }^{\mathrm{D}}-41.0^{\circ}(c 0.86$, MeOH); IR (film) $\nu_{\text {max }} 3580,3480,3080,3060,3040,2960,2940,2880$, $2850,1470,1465,1385,1360,1255,1215,1080,1030,990,940,840$, $800,770,690,675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 7.43$ (m, 2 H , aromatic), 7.32 (m, 3 H , aromatic), 5.43 ($\mathrm{s}, 1 \mathrm{H} \mathrm{PhCH} 2 \mathrm{O}$), 4.29 (dd, $\left.J=11.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.78(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CHO}, \mathrm{CH}_{2} \mathrm{O}$), 3.61 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.21 (m, l H, CH), 1.56 (m, 2 H , CH_{2}), $0.85(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.07,0.02,0.01$ (singlets, 12 H total, Si $M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H} \mathrm{497.3119} \mathrm{}$, $497.3123(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}_{2}: \mathrm{C}, 62.85 ; \mathrm{H}, 9.81$ Found: C, $62.55 ; \mathrm{H}, 9.93$
[$\left.2 R-\left[2 \alpha, 4 \alpha, 5 \beta, 5\left(S^{*}\right)\right]\right]-5-[1,3-\mathrm{Bis}[[(1,1$-dimethylethyl)dimethylsily1]-oxy]propyl]-2-phenyl-1,3-dioxane-4-carboxaldehyde (11). Dry triethylamine ($1.7 \mathrm{~mL}, 12 \mathrm{mmol}$) was added to a solution of alcohol $39(580 \mathrm{mg}$, $1.2 \mathrm{mmol})$ in freshly distilled DMSO (3 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and the solution was stirred under argon at $25^{\circ} \mathrm{C} . \mathrm{SO}_{3} \cdot \mathrm{pyr}$ complex $(1.1 \mathrm{~g}$, 7.2 mmol) was added portionwise, and the mixture was stirred for 4 h , diluted with ether (50 mL), and poured onto ice-water (50 mL). The organic phase was separated, and the aqueous phase was extracted with ether ($3 \times 75 \mathrm{~mL}$). The combined organic solution was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (20 mL), dried (MgSO_{4}), and concentrated, giving essentially pure aldehyde 11 ($550 \mathrm{mg}, 94 \%$). 11: colorless oil; R_{f} 0.33 (silica, $20 \% \mathrm{EtOAc}$ in petroleum ether); $[\alpha]^{20} \mathrm{D}-30.9^{\circ}$ (c 1.0, CHCl_{3}); 1R (film) $\nu_{\text {max }} 3080,3060,3020,2950,2920,2880,2850,1735$, $1470,1460,1385,1375,1360,1250,1220,1100,1030,1000,930,835$, $770,690,670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 9.68(\mathrm{~s}, 1 \mathrm{H}$, CHO), 7.52 (m, 2 H , aromatic), 7.37 (m, 3 H , aromatic), 5.52 (s, 1 H , $\mathrm{PhCHO}), 4.43$ (dd, $\left.J=11.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.24(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHO}), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.90\left(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.91$ (s, $18 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$), $0.08,0.06$ (singlets, 12 H total, $\mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}-\mathrm{H} 493.2807$, found $493.2865(\mathrm{M}-\mathrm{H})$.

5-O-[(1,1-Dimethylethyl)diphenylsilyl]-1,2-O-(1-methylethylidene)- α -D-xylofuranose (41a). To a magnetically stirred solution of the acetonide 40a (obtained from (+)-xylose (12a) ${ }^{15}(26.7 \mathrm{~g}, 0.14 \mathrm{~mol})$ and imidazole ($38.0 \mathrm{~g}, 0.56 \mathrm{~mol}$) in DMF (200 mL) at $0^{\circ} \mathrm{C}$ was added dropwise $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(42.0 \mathrm{~g} \equiv 39 \mathrm{~mL}, 0.15 \mathrm{~mol})$ over 10 min . The reaction mixture was allowed to reach room temperature and stirred for 1 h . Ether (400 mL) and water (50 mL) were then added to the mixture, and the organic phase was separated and washed with water ($3 \times 50 \mathrm{~mL}$) and brine (50 mL). Drying (MgSO_{4}), concentration, and purification by recrystallization (10% ether in hexane) gave pure silyl ether 41a (57.0 g, 94\%), 41a: colorless crystals; mp $93.0-93.5^{\circ} \mathrm{C} ;[\alpha]^{20} \mathrm{D}-2.3^{\circ}$ (c 2.5 , $\left.\mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}(\mathrm{KBr}) \nu_{\text {max }} 3480,2990,2965,2935,2880,2860,1430,1250$, $1220,1170,1118,1073,1052,1010,990,915,865,820,709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.52-7.33$ (m, 6 H , aromatic), $6.00(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.55(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-2), 4.37$ (m, $1 \mathrm{H}, \mathrm{H}-4), 4.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5), 4.07(\mathrm{~d}, J=3.1$ Hz, OH), 1.47, 1.33 (singlets, 3 H each, acetonide), 1.05 (s, $9 \mathrm{H}, \mathrm{Si}-t$ $B u$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 67.49 ; \mathrm{H}, 7.67$. Found: C, 67.26; H, 7.67 .

5-O-[(1,1-Dimethylethyl)diphenylsily $]$-1,2-O-(1-methylethylidene)- α -D-xylofuranose 3-(O-Phenylthiocarbonate) (42a). To a magnetically stirred mixture of alcohol 41 a ($32.1 \mathrm{~g}, 75.0 \mathrm{mmol}$), pyridine (16.0 mL , 198 mmol), and DMAP ($460 \mathrm{mg}, 3.75 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}(19.4 \mathrm{~g} \equiv 15.7 \mathrm{~mL}, 112 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The reaction mixture was stirred overnight at ambient temperature and then poured into ice water (150 mL). The
organic layer was separated, washed with water ($3 \times 20 \mathrm{~mL}$), saturated aqueous $\mathrm{CuSO}_{4}(2 \times 20 \mathrm{~mL})$, and brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash column chromatography (silica, 8% ether in petroleum ether) gave pure $\mathbf{4 2 a}$ ($39.8 \mathrm{~g}, 94 \%$). 42a: colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+1.5^{\circ}$ ($c 2.4, \mathrm{CHCl}_{3}$) IR (film) $\nu_{\text {max }} 2960,2935,2895,2860,1492,1430,1385$, 1375, 1310, 1272, 1202, 1165, 1110, 1105, 1065, 786, 761, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.60(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.50-7.20$ (m, 9 H , aromatic), 7.02 (dd, $J=8.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}$, a romatic), 5.97 (d, $J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, 5.78 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $4.79(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2), 4.56(\mathrm{dt}, J=7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-5), 1.56,1.35$ (singlets, 3 H each, acetonide), 1.07 (s, 9 H , $\mathrm{Si}-1-\mathrm{Bu}$); HRMS (Cl) calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{SSi}+\mathrm{H} 565.2078$, found 565.2131 ($\mathrm{M}+\mathrm{H}$).

3-Deoxy-5-O-[(1,1-dimethylethyl)diphenylsilyl]-1,2-O-(1-methyl-ethylidene)- α-D-xylofuranose (43a). Ester 42 a ($40.0 \mathrm{~g}, 71.0 \mathrm{mmol}$) and A1BN ($350 \mathrm{mg}, 2.5 \mathrm{mmol}$) were dissolved in dry toluene (500 mL) and degassed by passing argon through the solution with stirring (30 min). $n-\mathrm{Bu}_{3} \mathrm{SnH}(21.7 \mathrm{~g}, 74.0 \mathrm{mmol}$) was added. After being stirred for 1 h at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and the solvent was removed in vacuo. The product was purified by recrystallization from hexane to give deoxy sugar $43 \mathrm{a}(42.7 \mathrm{~g}, 77 \%)$. 43a: colorless crystalline solid; $R_{f} 0.13$ (silica, $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane); $[\alpha]^{20}{ }_{\mathrm{D}}$ -8.3° ($c 2.7, \mathrm{CHCl}_{3}$); $1 \mathrm{R}(\mathrm{KBr}) \nu_{\max } 2990,2955,2935,2915,2890,2858$, $1428,1386,1380,1370,1166,1136,1110,1100,1058,1035,1000,708$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.60-7.30$ (m, 6 H , aromatic), 5.83 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.75 (dd, $J=4.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5), 2.08$ (dd, $J=13.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.88$ (ddd, $J=13.4,10.3,4.6 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-3$), $1.51,1.33$ (singlets, 3 H each, acetonide), 1.05 (s, $9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$); HRMS (Cl) calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 413.2146$, found 413.2078 (M $+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.87 ; \mathrm{H}, 7.71$. Found: C , 70.01; H, 7.82.

Preparation of Deoxy Sugar 43a from 41a via lodide 59a. To a magnetically stirred solution of $41 \mathrm{a}(428 \mathrm{mg}, 1.00 \mathrm{mmol})$ and pyridine ($131 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ was slowly added $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}(186 \mu \mathrm{~L}, 1.10 \mathrm{mmol})$. Stirring was continued for 15 min at $-10^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{HCl}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}(10 \mathrm{~mL})$, and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give crude triflate 41a. This triflate was dissolved in dry benzene (5 mL) and $n-\mathrm{Bu}_{4} \mathrm{Nl}(739 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added. The resulting mixture was heated at reflux for 12 h , and then the solvent was removed in vacuo. The crude product was dissolved in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with $10 \% \mathrm{NaHSO}_{3}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO} \mathrm{H}_{3}$ $(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and brine (10 mL). Purification by flash column chromatography (silica, 10% ether in petroleum ether) gave iodide 59a ($323 \mathrm{mg}, 60 \%$). The iodide 59a obtained above was dissolved in THF (3 mL), and $\mathrm{LiEt}_{3} \mathrm{BH}$ (1 M in THF, $1.20 \mathrm{~mL}, 1.20 \mathrm{mmol}$) was added. The resulting solution was refluxed for 12 h and then cooled to room temperature and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The product was extracted with ether ($2 \times 20 \mathrm{~mL}$), and the combined extract was washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 10 \mathrm{~mL})$ and brine (10 mL). Drying (MgS O_{4}) followed by concentration and purification by flash column chromatography afforded deoxy sugar 43 a ($212 \mathrm{mg}, 95 \%$), which was identical with the product derived from $42 a$ as described above

3-Deoxy-5-O-[(1,1-dimethylethyl)diphenylsilyl]-D-xylofuranose (44). To a magnetically stirred solution of deoxy sugar $43 \mathrm{a}(20.0 \mathrm{~g}, 48.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(194 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added BCl_{3} (1 M solution in hexane, $63.0 \mathrm{~mL}, 63.0 \mathrm{mmol}$). The reaction mixture was stirred for 10 \min at $-78^{\circ} \mathrm{C}$ and then poured into a pH 7 buffer solution (1 M phosphate buffer, 630 mL) and vigorously stirred at room temperature for 1 h . The reaction mixture was diluted with EtOAc (400 mL), and the organic phase was separated and washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL) and dried (MgSO_{4}). The crude product was purified by flash column chromatography (silica, 70% ether in petroleum ether) to afford lactol $44\left(\alpha / \beta=57 / 43,16.2 \mathrm{~g}, 90 \%\right.$). 44 (α, β mixture $57 / 43$ ratio): R_{f} 0.33 (silica, ether); $[\alpha]^{20}{ }_{\mathrm{D}}+8.8^{\circ}\left(c 2.9, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}$ (film) $\nu_{\text {max }} 3410$, 2935, 2860, 1429, 1110, 1040, 945, 820, 790, 740, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \alpha$ anomer) $\delta 7.75-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.50-7.30$ (m, 6 H , aromatic), $5.19(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 4.24 (m, 1 H, H-2), 3.84 (dd, $J=10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.72 (d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.50(\mathrm{dd}, J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.76$ (d, J $=5.9,1 \mathrm{H}, \mathrm{OH}), 2.27-1.91(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.07(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-B u)$; HRMS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}$ - OMe 341.1572 , found 341.1564 (M - OMe).
(2S,4R)-7-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-5-hexene-2,4-diol (45). To a stirred suspension of $\left[\mathrm{Ph}_{3} \mathrm{PCH}_{3}\right]^{+} \mathrm{Br}^{-}(30.5 \mathrm{~g}, 85.4 \mathrm{mmol})$ in dry THF (160 mL) was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexane. 53.4 $\mathrm{mL}, 85.4 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$ under an argon atmosphere. The mixture was stirred for 20 min at $-20^{\circ} \mathrm{C}$ and for 25 min at $0^{\circ} \mathrm{C}$ and then cooled
back to $-20^{\circ} \mathrm{C}$. Lactol $\mathbf{4 0}$ ($10.6 \mathrm{~g}, 28.5 \mathrm{mmol}$) was dissolved in dry THF $(90 \mathrm{~mL}), \mathrm{NaH}$ (50% in mineral oil, $1.37 \mathrm{~g}, 28.5 \mathrm{mmol}$) was added at -10 ${ }^{\circ} \mathrm{C}$ under an argon atmosphere, and the mixture was stirred at the same temperature for 20 min . The ylide solution prepared above was then added dropwise at $-20^{\circ} \mathrm{C}$ over a $5-\mathrm{min}$ period, and stirring was continued for 20 min at $-20^{\circ} \mathrm{C}$ and 3 h at room temperature. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and diluted with ether (300 mL). The organic layer was separated and washed with water (50 mL) and brine. Drying (MgSO_{4}), evaporation, and flash column chromatography (silica, 70% ether in petroleum ether) gave pure diol 45 ($7.39 \mathrm{~g}, 70 \%$). 45: $R_{f} 0.63$ (silica, ether); $[\alpha]^{20} \mathrm{D}-1.3^{\circ}\left(c 2.6, \mathrm{CHCl}_{3}\right)$; 1 R (film) $\nu_{\max } 3390,2960,2935,2860,1471,1461,1429,1390,1361$, $1115,1075,910,825,735,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.70-7.60$ (m, 4 H , aromatic), $7.50-7.35$ (m, 6 H , aromatic), 5.82 (ddd, $J=17.4,10.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.25(\mathrm{dt}, J=17.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 5.09 (dt, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.98(\mathrm{~m}, 1$ H, H-2), 3.62 (dd, $J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 3.43 (dd, $J=10.2,7.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.30(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.04(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{OH}), 1.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.07(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (Cl) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}-\mathrm{OH}-\mathrm{H}_{2} \mathrm{O} 335.1829$, found $335.1786(\mathrm{M}-\mathrm{OH}$ $\mathrm{H}_{2} \mathrm{O}$).

4S-(4ק,6 $)$]-6-Etheny]-4-[[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-methylf-2,2-dimethyl-1,3-dioxane (46). A mixture of diol 45 ($12.5 \mathrm{~g}, 33.8$ mmol) and CSA ($75 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 2,2-dimethoxypropane (70 mL) was stirred for 1 h under an argon atmosphere. The reaction mixture was diluted with ether (300 mL), and the organic layer was separated, washed with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, water (50 mL), and brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification by flash column chromatography (silica, 5% ether in petroleum ether) gave acetonide $46(12.2 \mathrm{~g}, 88 \%) .46: R_{f} 0.22$ (silica, 10% ether in petroleum ether); $[\alpha]^{20}{ }_{D}+2.7^{\circ}\left(c 2.7, \mathrm{CHCl}_{3}\right.$); IR (film) $\nu_{\max } 2995,2960,2935$, $2860,1430,1380,1275,1201,1176,1130,1115,1030,997,987,920$, $821,735,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.47-7.33$ ($\mathrm{m}, 6 \mathrm{H}$, aromatic), 5.83 (ddd, $J=17.1,10.4,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$, olefinic), $5.27(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $5.14(\mathrm{t}, J$ $=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 3.72 (dd, $J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.55 (dd, $J=10.1,6.1 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 1.68 (dt, $J=12.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.46, 1.40 (singlets, 3 H each, acetonide), $1.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 1.06(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (Cl) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ - Me 395.2041 , found 395.2072 (M - Me).

2,3-Dideoxy-6-O-[(1,1-dimethylethyl)diphenylsilyl]-3,5-O-(1-methyl-ethylidene)-D-erythro-hexitol (47). To a magnetically stirred solution of 2 -methyl-2-butene ($7.02 \mathrm{~g} \equiv 10.6 \mathrm{~mL}, 100 \mathrm{mmol}$) in dry THF (100 mL) at $0{ }^{\circ} \mathrm{C}$ was added a $\mathrm{BH}_{3} \cdot$ THF solution ($1 \mathrm{M}, 50.0 \mathrm{~mL}, 50.0 \mathrm{mmol}$). After the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, a solution of olefin 46 (10.0 $\mathrm{g}, 24.4 \mathrm{mmol}$) in THF (50 mL) was added dropwise and stirring was continued at $0^{\circ} \mathrm{C}$ for 2 h . The excess reagent was quenched with $\mathrm{H}_{2} \mathrm{O}$ (5 mL), and $6 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL}, 300 \mathrm{mmol}$) was slowly added followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(35 \mathrm{~mL})$. The mixture was vigorously stirred at room temperature for 30 min and then diluted with ether (300 mL). The organic phase was separated and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL}), 10 \%$ aqueous $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, and brine (50 mL) and dried (MgSO_{4}). The solution was concentrated in vacuo, and the residue was purified by flash column chromatography (silica, 60% ether in petroleum ether) to afford alcohol $47(8.99 \mathrm{~g}, 86 \%)$. 47: colorless oil; $R_{f} 0.39$ (silica, 85% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}$ $-13.4^{\circ}\left(c 1.9, \mathrm{CHCl}_{3}\right)$; 1R (film) $\nu_{\max } 3440,2935,2860,1470,1461$, $1429,1380,1200,1140,1105,1050,820,737,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.12$ (m, $1 \mathrm{H}, \mathrm{H}-3$), 3.99 (m, $1 \mathrm{H}, \mathrm{H}-5$), 3.76 (m, 2 H , $\mathrm{H}-1), 3.71$ (dd, $J=10.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.54(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 2.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.73(\mathrm{dt}, J=5.6,5.5,2 \mathrm{H}$, $\mathrm{Hz}, \mathrm{H}-2$), 1.58 (dt, $J=12.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 1.44, 1.37 (singlets, 3 H each, acetonide), 1.30 (ddd, $J=12.9,11.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.06$ $(\mathrm{s}, 9 \mathrm{H}, \mathrm{Si}-t-B u)$; HRMS (Cl) calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 429.2459$, found $429.2436(\mathrm{M}+\mathrm{H})$.

2,4-Dideoxy-6-O-[(1,1-dimethylethyl)diphenylsily $]$-3,5-O-(1-methyl-ethylidene)-1-O-(phenylmethyl)-D-erythro-hexitol (48). To a stirred suspension of $\mathrm{KH}(1.40 \mathrm{~g}, 25 \%$ in mineral oil, 8.78 mmol$)$ in dry THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added, under argon, alcohol $47(3.00 \mathrm{~g}, 7.02 \mathrm{mmol})$ in THF (15 mL) over 10 min . The reaction mixture was allowed to reach room temperature and stirred for an additional 10 min. Benzyl bromide $(1.50 \mathrm{~g}, 8.78 \mathrm{mmol})$ was added, and the mixture was stirred for 14 h at room temperature. The resulting mixture was diluted with ether (150 mL), washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, water (30 mL), and brine (30 mL), dried (MgSO_{4}), and concentrated. Purification by flash column chromatography (silica, 5% ether in petroleum ether) afforded benzyl ether $48(3.09 \mathrm{~g}, 85 \%)$. 48 : colorless oil; $R_{f} 0.80$ (silica, 50% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-12.7^{\circ}\left(\mathrm{c} 2.5, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\max } 2990,2935,2860,1470,1450,1425,1379,1197,1168,1108,994$, $818,735,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.65(\mathrm{~m}, 4 \mathrm{H}$,
aromatic), 7.46-7.27 (m, 6 H , aromatic), 7.33 ($\mathrm{s}, 5 \mathrm{H}$, aromatic), 4.51 (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), $4.49(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCH}, \mathrm{O})$, 4.00 (m, 2 H, H-3, H-5), 3.71 (dd, $J=10.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.55 (m, $2 \mathrm{H}, \mathrm{H}-1$), 3.53 (dd, $J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.77 (m, 2 H , $\mathrm{H}-2$), 1.59 (m, $1 \mathrm{H}, \mathrm{H}-4$), 1.40, 1.35 (singlets, 3 H each, acetonide), 1.25 (m, $1 \mathrm{H}, \mathrm{H}-4$), 1.07, 1.05 (singlets, 9 H total, $\mathrm{Si}-t-B u$); HRMS (Cl) calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 519.2928$, found 519.2950.

2,4-Dideoxy-3,5-O-(1-methylethylidene)-1-O-(phenylmethyl)-D-erythro-hexitol (49). n - $\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF, $30 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was slowly added to silyl ether $48(13.0 \mathrm{~g}, 25.0 \mathrm{mmol})$ in dry THF (120 mL) at room temperature, and the reaction mixture was stirred for 1 h . This mixture was diluted with ether (100 mL), washed with water (5×30 mL) and brine (30 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration, followed by flash column chromatography (silica, $20 \rightarrow 70 \%$ ether in petroleum ether), gave alcohol $49(6.75 \mathrm{~g}, 96 \%)$. 49: colorless oil; $R_{f} 0.24$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}-14.6^{\circ}\left(c 0.26, \mathrm{CHCl}_{3}\right)$; 1R (CH$\left.\mathrm{Cl}_{3}\right) \nu_{\max } 3600(\mathrm{OH}), 3000,2970,2920,2870,1450,1380,1200,1165$, $1100,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.20(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.53,4.47$ (doublets, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 4.05 (m, $2 \mathrm{H}, \mathrm{CHO}$), 3.55 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.02 (dd, $J=7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.44,1.39$ (singlets, 3 H each, acetonide), 1.30 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{H} 281.1753$, found $281.1745(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4}: \mathrm{C}, 68.54 ; \mathrm{H}, 8.63$. Found: C, 68.57; H, 8.62.

3,5-Dideoxy-2,4-O-(1-methylethylidene)-6-O-(phenylmethyl)-L-erythro-hexose (9). To a magnetically stirred solution of alcohol 49 (5.9 $\mathrm{g}, 21.1 \mathrm{mmol})$, DMSO $(50.0 \mathrm{~mL})$, and triethylamine $(1.50 \mathrm{~mL}, 106$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{SO}_{3} \cdot \mathrm{Pyr}$ complex ($16.8 \mathrm{~g}, 106$ mmol), and stirring was continued for 0.5 h . The mixture was then diluted with ether (200 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL}), 5 \%$ aqueous HCl (25 mL), saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, and brine (25 mL). Drying (MgSO_{4}) and concentration followed by flash column chromatography (silica, 60% ether in petroleum ether) gave pure aldehyde 9 ($5.4 \mathrm{~g}, 92 \%$). 9: colorless oil; $R_{f} 0.22$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-62.5^{\circ}\left(c 0.40, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3000$, 2885, $1740(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1455,1385,1200,1170,1105,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}$), $7.38-7.26$ (m, 5 H , aromatic), 4.53, 4.47 (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.30 (dd, $J=$ $12.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}(\mathrm{O}), 4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, $1.80\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46\left(\mathrm{~s}, 6 \mathrm{H}\right.$, acetonide), $1.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$; HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}+\mathrm{H} 279.1596$, found $279.1615(\mathrm{M}+$ H).

3-Deoxy-1,2-O-(1-methylethylidene)- α-L-xylofuranose (43b). Compound $\mathbf{4 3 b}$ was prepared by the same sequence as compound 43 a except that (- -)-xylose was used as the starting material. Compound 43b was identical with 43 a except for the $[\alpha]^{20}{ }_{\mathrm{D}}$, which was $+8.0^{\circ}\left(c 2.4, \mathrm{CHCl}_{3}\right)$.

3-Deoxy-1,2-O-(1-methylethylidene)- α-L-xylofuranose (50). To a magnetically stirred solution of silyl ether 43 b ($23.0 \mathrm{~g}, 55.8 \mathrm{mmol}$) in dry THF (55 mL) was added dropwise $n-\mathrm{Bu}_{4} \mathrm{NF}(1 \mathrm{M}$ in THF, 60.0 mL , 60.0 mmol), and the reaction mixture was stirred for 30 min . The mixture was concentrated to one-third of its original volume and directly subjected to flash chromatography (silica, 80% ether in petroleum ether) to give crystalline alcohol $\mathbf{5 0}(8.94 \mathrm{~g}, \mathbf{9 2 \%})$. 50: colorless crystalline solid; mp 78-79 ${ }^{\circ} \mathrm{C}$ (ether-hexane); $R_{f} 0.28$ (silica, ether); $[\alpha]^{20}{ }_{\mathrm{D}}+12.5^{\circ}$ (c $3.5, \mathrm{CHCl}_{3}$); $1 \mathrm{R}(\mathrm{KBr}) \nu_{\max } 3490,3390,2995,2970,2940,1380,1371$, $1265,1210,1165,1110,1065,1058,1049,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.76(\mathrm{dd}, J=4.6,3.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.56(\mathrm{~m}, 1 \mathrm{H}$, H-5), 2.21 (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.00 (dd, $J=13.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.84 (ddd, $J=13.5,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.52,1.33$ (singlets, 3 H each, acetonide). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 55.16 ; \mathrm{H}, 8.10$. Found: C , 55.32; H, 8.07

3-Deoxy-1,2-O-(1-methylethylidene)-5-O-(phenylmethyl)- α-L-xylofuranose (51). To a magnetically stirred solution of alcohol $50(40.7 \mathrm{~g}$, 234 mmol) in dry THF (240 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(12.0 \mathrm{~g}, 60 \%$ in mineral oil, 304 mmol), the mixture was allowed to warm to room temperature, and stirring was continued for $20 \mathrm{~min} . n-\mathrm{Bu}_{4} \mathrm{~N} 1(865 \mathrm{mg}$, 2.34 mmol) was added, and the mixture was cooled to $0^{\circ} \mathrm{C}$ before benzyl bromide ($31.0 \mathrm{~mL}, 257 \mathrm{mmol}$) was added slowly. The resulting mixture was then allowed to stir for 1 h at room temperature, after which time saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ and ether (400 mL) were added. The organic phase was separated, washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL), dried (MgSO_{4}), and concentrated. Purification by flash column chromatography (silica, 30% ether in petroleum ether) gave benzyl ether $51\left(58.7 \mathrm{~g}, 95 \%\right.$). 51: colorless oil; $R_{f} 0.56$ (silica, 60% in petroleum ether); 1R (film) $\nu_{\text {max }} 3035,2990,2940,2910,2865,1382,3373,1213$, $1165,1130,1100,1061,1020,738,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.84(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, 4.73 (dd, $J=4.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.58 (s, $2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}$), 4.41 (m, $1 \mathrm{H}, \mathrm{H}-4), 3.64(\mathrm{dd}, J=10.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 3.54(\mathrm{dd}, J=10.7$,
$5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.06(\mathrm{dd}, J=13.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.76$ (ddd, J $=13.4,10.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.51, 1.33 (singlets, 3 H each, acetonide); HRMS (Cl) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{H} 265.1406$, found 265.1439 ($\mathrm{M}+\mathrm{H}$).

3-Deoxy-5-O-(phenylmethyl)-L-xylofuranose (52). A mixture of acetonide 51 ($12.6 \mathrm{~g}, 48.0 \mathrm{mmol}$), aqueous $\mathrm{HCl}(1.2 \mathrm{~N}, 24 \mathrm{~mL}, 28.8$ mmol), water (105 mL), and DME (200 mL) was heated under reflux for 1 h . After being cooled to room temperature, the mixture was neutralized with NaHCO_{3} (ca. 2.5 g), concentrated to ca. 50 mL , and extracted with ether ($5 \times 50 \mathrm{~mL}$). The combined organic phase was washed with water (10 mL) and brine (10 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration followed by flash column chromatography (silica, 2% MeOH in ether) gave diol 52 ($10.2 \mathrm{~g}, 95 \%$). 52: colorless oil; $R_{f} 0.41$ (silica, 2.5% EtOH in ether); $[\alpha]^{20}{ }_{\mathrm{D}}-5.5^{\circ}\left(c 2.1, \mathrm{CHCl}_{3}, \alpha / \beta=67 / 33\right)$; IR (film) $i_{\max } 3400,3040,2940,2868,1452,795,735,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \alpha$ anomer) $\delta 7.50-7.30$ (m, 5 H , aromatic), $5.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.64,4.57$ (doublets, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}$ cach, $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 4.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.81,3.77$ (singlets, 1 H each, OH), 3.68 (dd, $J=10.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.43 (dd, $J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.33, 2.03 (multiplets, 1 H each, $\mathrm{H}-3$); HRMS (CI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}-\mathrm{OH} 207.1020$, found 207.1017 (M OH).
(2R,4S)-1-[(Phenylmethoxy)methyl]-5-hexene-2,4-diol (53). Compound 53 was prepared from 52 in the same manner as described for $\mathbf{4 5}$ from 44 (67% yield). 52: colorless oil; $R_{f} 0.63$ (silica, $2.5 \% \mathrm{EtOH}$ in ether); $[\alpha]^{20}{ }_{\mathrm{D}}+0.86^{\circ}\left(c 2.3, \mathrm{CHCl}_{3}\right)$; R (film) $\nu_{\max } 3400,2918,2965$, $1452,1362,1095,990,920 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ (s, 5 H , aromatic), 5.84 (ddd, $J=17.2,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.24 (ddd, $J=17.2,1.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 5.08 (ddd, $J=10.4,1.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 4.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.35$ (m, $1 \mathrm{H}, \mathrm{H}-4$), 4.05 (m, 1 H , $\mathrm{H}-2), 3.46$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 3.41 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.63$ (m, $2 \mathrm{H}, \mathrm{H}-3$); HRMS (Cl) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}+\mathrm{H} 223.1333$, found $223.1321(\mathrm{M}+\mathrm{H})$.
[4R-(4, $5 \alpha)]-4-[($ Phenylmethoxy $)$ methyl]-6-ethenyl-2,2-dimethyl-1,3dioxane (54). Compound 54 was prepared from 53 in the same manner as described for $\mathbf{4 6}$ from $\mathbf{4 5}\left(90 \%\right.$ yield). 54: colorless oil; $R_{f} 0.30$ (silica, 10% ether in petroleum ether); $[\alpha]^{20} \mathrm{D}+1.48^{\circ}$ (c $2.3, \mathrm{CHCl}_{3}$); RR (film) $\nu_{\max } 2995,2940,2910,2865,1451,1379,1255,1200,1173,1101,985$, $920,861,735,694 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.27(\mathrm{~m}$, 5 H , aromatic), 5.82 (ddd, $J=17.2,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.25 (ddd, $J=17.2,1.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.12 (ddd, $J=10.5,1.3,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$, olefinic), $4.60,4.54$ (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.37 (m, 1 H, H-6), 4.14 (m, $1 \mathrm{H}, \mathrm{H}-4$), 3.52 (dd, $J=9.9$, $\left.5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.38\left(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.60(\mathrm{dt}$, $J=12.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $1.50,1.45$ (singlets, 3 H each, acetonide), 1.34 (dt, $J=12.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$); HRMS (Cl) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$ + H 263.1646 , found $263.1636(\mathrm{M}+\mathrm{H})$

3,5-Dideoxy-2,4-O-(1-methylethylidene)-1-O-(phenylmethyl)-D-erythro-hexitol (55). Compound $\mathbf{5 5}$ was prepared from 54 in the same manner as described for 47 from 46 (93% yield). 55: colorless oil; R_{f} 0.14 (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+22.9^{\circ}\left(c 2.5, \mathrm{CHCl}_{3}\right)$; 1R (film) $\nu_{\text {max }} 3450,2945,2920,2870,1380,1200,1165,1105,1050$, $737,695 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (s, 5 H , aromatic), $4.57,4.54$ (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.10 (m, 2 H , H-2, H-4), 3.74 (m, 2 H, H-6), 3.50 (dd, $J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $3.37(\mathrm{dd}, J=9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 2.65(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.71$ (m, $2 \mathrm{H}, \mathrm{H}-5$), 1.51 (ddd, $J=12.9,2.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.48, 1.41 (singlets, 3 H each, acetonide), 1.33 (dt, $J=12.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$); HRMS (Cl) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}+\mathrm{H} 281.1751$, found 281.1753 ($\mathrm{M}+$ H)

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-O-(1-methyl-ethylidene)-1-O-(phenylmethyl)-D-erythro-hexitol (56), Compound 56 was prepared from 55 in the same manner as described for 68b from 13b (92% yield). 56: colorless oil; $R_{f} 0.8$ (silica, 60% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+17.6^{\circ}\left(c 2.5, \mathrm{CHCl}_{3}\right)$; 1 R (film) $\nu_{\text {max }} 2950,2925,2885$, $1380,1256,1200,1100,835,772 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.60,4.54$ (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH} \mathrm{O}_{2} \mathrm{O}$), 4.08 (m, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$), 3.72 (ddd, $J=10.1,7.5,5.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.63 (dd, $J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.50 (dd, $J=9.9$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.37(\mathrm{dd}, J=9.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 1.65(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5$), 1.54 (ddd, $J=12.8,2.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.45,1.40$ (singlets, 3 H each, acetonide), 1.22 (dt, $J=12.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 0.89 (s, $9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.04\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} M e_{2}\right)$; HRMS (Cl) calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$ 395.2616, found 395.2611

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-O-(1-methyl-ethylidene)-D-erythro-hexitol (57). Benzyl ether 56 ($2.45 \mathrm{~g}, 6.20 \mathrm{mmol}$) was dissolved in EtOH (30 mL) and stirred under a hydrogen atmosphere in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(500 \mathrm{mg})$ at room temperature for 1 h . The catalyst was filtered off, and the solvent was removed in vacuo. Purification by flash column chromatography gave pure alcohol $57(1.85 \mathrm{~g}$,

98\%). 57: colorless oil; $R_{f} 0.20$ (silica, 40% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}+10.2^{\circ}\left(c 0.40, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) \nu_{\max } 3600(\mathrm{OH}), 2960,2930$, $2880,2860,1470,1465,1380,1260,1100,840 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.78-3.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$, CHO), 2.05 (dd, $\left.J=7.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45$, 1.44 (singlets, 3 H each, acetonide), 1.35 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), $0.89(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Si}-t-\mathrm{Bu}$), 0.05 (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H}$ 305.2148 , found $305.2088(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}$, 59.69 ; H, 10.59. Found: C, $59.45 ; \mathrm{H}, 10.62$.

Methyl 3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-O-(1-methylethylidene)-D-erythro -hexonate (58). To a magnetically stirred solution of alcohol $57(304 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{NalO}_{4}(1.07 \mathrm{~g}, 5.00$ mmol) in $\mathrm{MeCN}(2 \mathrm{~mL}), \mathrm{CCl}_{4}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added a catalytic amount of ruthenium(1V) oxide hydrate (3 mg). The mixture was vigorously stirred for 6 h (TLC monitoring) and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic phase was separated. and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{ml})$. The combined extract was concentrated, dissolved in ether (5 mL), and cooled to $0^{\circ} \mathrm{C}$. Excess ethereal diazomethane was added to this solution, and after the completion of esterification (TLC) argon was bubbled through the solution to remove the excess diazomethane (20 min). This solution was diluted with ether (50 mL), dried (MgSO_{4}), and concentrated. Flash column chromatography (silica, 20% ether in petroleum ether) afforded pure methyl ester 58 ($253 \mathrm{mg}, 76 \%$). 58: colorless oil; $R_{f} 0.20$ (silica, 20% ether in petroleum ether); $[\alpha]^{20} \mathrm{D}+20.4^{\circ}\left(c 4.9, \mathrm{CHCl}_{3}\right)$; IR (CH$\mathrm{Cl}_{3}$) $\nu_{\text {max }} 3000,2960,2950,2860,1755(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1470,1460,1440$, $1380,1260,1140,1100,830 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50$ (dd, $J=12.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHC}(\mathrm{O})), 4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.74$ (s, $3 \mathrm{H}, \mathrm{OCH})_{3}, 3.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{O}_{2} \mathrm{O}\right), 1.85(\mathrm{dt}, J=13.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.70-1.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45,1.44$ (singlets, 3 H each, acetonide), 0.86 (s, $9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}$), 0.02 (s, $6 \mathrm{H}, \mathrm{Si} M e_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}+\mathrm{H}$ 333.2097, found 333.2052. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 57.59 ; \mathrm{H}, 9.70$. Found: C, $58.00 ; \mathrm{H}, 9.95$

Dimethyl [[[(4R,6R)-6-[2-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-ethyl]-2,2-dimethyl-m-dioxan-4-yl]carbonyl]methyl]phosphonate (10). To a magnetically stirred solution of dimethyl methylphosphonate (236 mg $\equiv 0.270 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in dry THF (25 mL) was added $n-\mathrm{BuLi}(1.6$ M in hexane, $1.56 \mathrm{~mL}, 2.50 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at the same temperature. A solution of methyl ester $58(332 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dry THF (5 mL) was slowly added, and stirring was continued for 30 min . The reaction mixture was quenched at $-78^{\circ} \mathrm{C}$ with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and then allowed to warm to room temperature, diluted with ether (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Purification by flash column chromatography (silica, ether $\rightarrow 2.5 \%$ MeOH in ether) gave pure keto phosphonate 10 ($407 \mathrm{mg}, 96 \%$). 10: colorless oil; $R_{f} 0.16$ (silica, ether); $[\alpha]^{20}{ }_{\mathrm{D}}+48.1^{\circ}\left(c 3.6, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}$ $\left(\mathrm{CHCl}_{3}\right) \nu_{\text {max }} 3020,2980,2960,2870,1730(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 1480,1470,1380$, $1255,1045,840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.36$ (dd, $J=11.9$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHC}(\mathrm{O})), 4.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.770(\mathrm{~d}, J=11.1 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{POCH} H_{3}$, $\left.3.768(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{POCH})_{3}\right), 3.64(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.47 (dd, $J=22.6,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH} \mathrm{C}(\mathrm{O})$), 3.16 (dd, $J=$ $21.9,14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH} C(\mathrm{O})$), $1.79\left(\mathrm{dt}, J=13.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.63 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.44, 1.42 (singlets, 3 H each, acetonide), 1.30 (dt, $\left.J=13.0,11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu}), 0.01(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{Si} \mathrm{Me}_{2}$); HRMS (Cl) calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{7} \mathrm{PSi}+\mathrm{H} 425.2124$, found $425.2134(\mathrm{M}+\mathrm{H})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{7}$ PSi: $\mathrm{C}, 50.92 ; \mathrm{H}, 8.78$; P, 7.30. Found: C, $50.75 ; \mathrm{H}, 8.77$, P, 7.42
[2R-(2 $\beta, \mathbf{3} \alpha)]$-3-[(Phenylmethoxy)methyl]oxiranemethanol (60a). D-$(-)$-Diethyltartrate ($22.7 \mathrm{~g}, 0.11 \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was slowly added to a stirred solution of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(31.2 \mathrm{~g}, 0.11 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (800 mL) at $-23^{\circ} \mathrm{C}$ under argon. Stirring was continued at $-23^{\circ} \mathrm{C}$ for 15 min , and then allylic alcohol $14(17.8 \mathrm{~g}, 0.10 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL) was slowly added, followed by $t-\mathrm{BuOOH}\left(4 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 57.5 \mathrm{~mL}$, 0.23 mol). The reaction mixture was stirred for 5 h at $-23^{\circ} \mathrm{C}$, and then it was quenched with $\mathrm{Me}_{2} \mathrm{~S}(2 \mathrm{~mL})$ and 10% aqueous tartaric acid (100 mL). After being stirred at $-23^{\circ} \mathrm{C}$ for 0.5 h and then at room temperature for 1 h , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and the organic phase was separated. Washing of the organic phase with water (100 mL) and brine (100 mL) followed by drying $\left(\mathrm{MgSO}_{4}\right)$, concentration, and flash column chromatography (silica, 80% ether in petroleum ether) gave epoxide $60 \mathrm{a}\left(1.45 \mathrm{~g}, 75 \%\right.$). 60a: colorless oil; $R_{f} 0.17$ (silica, ether); $[\alpha]^{25} \mathrm{D}+21.8^{\circ}\left(c 6.5, \mathrm{CHCl}_{3}\right)$; 1R (film) $\nu_{\text {max }} 3430,3060,3025$, $2980,2920,2860,1492,1452,1362,1310,1240,1203,1100,1025,867$ $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.60,4.57$ (doublets, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 3.93 (ddd, $J=$ 12.8, $5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.77 (dd, $J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.64 (ddd, $J=12.8,7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.53 (dd, $J=11.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.24 (m, $1 \mathrm{H}, \mathrm{CH}$ epoxide), $3.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ epoxide), 1.99 (dd, $J=7.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$); HRMS (Cl) calcd for

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} 194.0943$, found $194.0955\left(\mathrm{M}^{+}\right)$.

[$2 R$ - $(\mathbf{2} \beta, \mathbf{3} \alpha)]$-3-[(Phenylmethoxy) methyl]oxiranecarboxaldehyde (61a). To a cold ($-78^{\circ} \mathrm{C}$) stirred solution of oxalyl chloride ($5.35 \mathrm{~g} \equiv$ $3.60 \mathrm{~mL}, 42.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was slowly added DMSO $(4.38 \mathrm{~g} \equiv 4.0 \mathrm{~mL}, 56.2 \mathrm{mmol})$. After the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , epoxy alcohol $60 \mathrm{a}(8.16 \mathrm{~g}, 42.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added, and the reaction mixture was stirred at that temperature for 15 min . Triethylamine ($14.1 \mathrm{~g} \equiv 13.2 \mathrm{~mL}, 140 \mathrm{mmol}$) was slowly added, and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then the cooling bath was removed and stirring was continued for an additional 30 min . Dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL), washing with dilute aqueous $\mathrm{HCl}(100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$, followed by drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation, gave essentially pure aldehyde $61 \mathrm{a}(8.00 \mathrm{~g}$, 98%). Further purification could be effected by flash column chromatography (silica, 30% ether in petroleum ether): $R_{f} 0.24$ (silica, 50% ether in petroleum ether); $[\alpha]^{25} \mathrm{D}-9.4^{\circ}\left(c 1.8, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R}$ (film) $\nu_{\text {max }}$ 3022, 2920, 2920, 2860, 1730 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1493, 1452, 1361, 1210, 1098, 1025, 859, 736, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05$ (d, $J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 7.34 (s, 5 H , aromatic), $4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH} \mathrm{P}_{2} \mathrm{O}\right), 3.85$ (dd, $J=11.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.59 (dd, $J=11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.48 (m, $1 \mathrm{H}, \mathrm{CH}$ epoxide), 3.34 (dd, $J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ epoxide); HRMS (Cl) calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}+\mathrm{H} \mathrm{193.0864}$, $193.0826(\mathrm{M}+\mathrm{H})$.
[2R-(2 $\beta, 3 \alpha, E)]$ 3-[(Phenylmethoxy)methyl]oxiranepropenoic Acid Methyl Ester (62a). A mixture of aldehyde $61 \mathrm{a}(5.10 \mathrm{~g}, 26.6 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOMe}(10.0 \mathrm{~g}, 29.9 \mathrm{mmol})$ in dry benzene (30 mL) was stirred at room temperature under argon for 16 h . Concentration followed by flash column chromatography (silica, 20% ether in petroleum ether) gave, in order of elution, the Z isomer of $\mathbf{6 2 a}$ ($955 \mathrm{mg}, 14.5 \%$) and E olefin $62 \mathrm{a}\left(5.05 \mathrm{~g}, 77 \%\right.$). E olefin 62a: colorless oil; $R_{f} 0.42$ (silica, 50% ether in petroleum ether) (R_{f} for the Z isomer of $62 a$ in same system was 0.51); $[\alpha]^{25}{ }_{\mathrm{D}}+17.9^{\circ}\left(c\right.$ l.5, CHCl_{3}); 1R (film) $\nu_{\text {max }} 3060,3025$, $2995,2950,2860,1725,1660,1492,1451,1433,1360,1305,1275,1195$, 1180, 1140, 1098, 1025, $973,882,850,740,697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~s}, 5 \mathrm{H}$, aromatic), 6.68 (dd, $J=15.8,7.3 \mathrm{~Hz}, 1$ H, olefinic), $6.16\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, olefinic), $4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$, 3.79 (dd, $\left.J=12.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.58$ (dd, $J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.42(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ epoxide), 3.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ epoxide); HRMS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ +H 249.1126 , found $249.1133(\mathrm{M}+\mathrm{H})$.
(S)-6-(Phenylmethoxy)-2-hexene-1,5-diol (63a). To a stirred solution of epoxy ester 62 a (E isomer, $4.80 \mathrm{~g}, 19.4 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(190$ mL) was slowly added D1BAL ($114 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 114 mmol) at $-78^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 min and then quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ and water (10 $\mathrm{mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and washed with dilute aqueous $\mathrm{HCl}(100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$. Drying (MgSO_{4}) followed by concentration and flash column chromatography (silica, ether) gave pure allylic alcohol 63a ($3.53 \mathrm{~g}, 82 \%$). 63a: colorless oil; $R_{f} 0.31$ (silica, 2.5% EtOH in ether); $[\alpha]^{25} \mathrm{D}+2.7^{\circ}$ (c 1.5, CHCl_{3}); IR (film) $\nu_{\max } 3390,3030,2920,2865,1496,1455,1365,1207$, $1102,1093,1030,1000,972,738,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~s}, 5 \mathrm{H}$, aromatic), $5.70(\mathrm{~m}, 2 \mathrm{H}$, olefinic), $4.55(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), $4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.73$ (dd, $J=$ $9.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.50 (dd, $J=9.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.55 (br s, $1 \mathrm{H}, \mathrm{OH}$), $2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.73(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}) ; \mathrm{HRMS}(\mathrm{Cl})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}+\mathrm{H} 223.1333$, found $223.1364(\mathrm{M}+\mathrm{H})$.
(S)-6-(Phenylmethoxy)-2-hexene-1,5-diol 1-(2,2-Dimethylpropanoate) (64a), To a stirred solution of diol 63a ($4.50 \mathrm{~g}, 20.3 \mathrm{mmol}$) in dry pyridine (2.2 mL) was added trimethylacetyl chloride ($2.93 \mathrm{~g} \equiv 3.0 \mathrm{~mL}$, 24.3 mmol) at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then quenched with water (10 mL) and extracted with ether (100 mL). The organic phase was washed with dilute aqueous HCl $(25 \mathrm{~mL})$, water $(25 \mathrm{~mL})$, and brine (25 mL) and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration followed by flash column chromatography (silica, 50% ether in petroleum ether) gave pivaloate ester 64 a ($5.89 \mathrm{~g}, 95 \%$). 64a: colorless oil; $R_{f} 0.68$ (silica, 85% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+2.8^{\circ}$ (c $1.7, \mathrm{CHCl}_{3}$); IR (film) $\nu_{\max } 3460,3020,2985,2930,2900,2870,1730$, $1492,1480,1452,1395,1363,1280,1150,1110,1098,1025,970,765$, $730,693 \mathrm{~cm}^{-1}$; H NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (s, 5 H , aromatic), $5.76(\mathrm{dt}, J=15.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $5.63(\mathrm{dt}, J=15.4,5.7 \mathrm{~Hz}, 1$ H , olefinic), $4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.50(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})$), $3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}$), 3.47 (dd, $J=9.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.35 (dd, $J=9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.71 (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.25 (dd, $J=6.8,6.3 \mathrm{~Hz}, 2 \mathrm{H}$, allylic CH_{2}), 1.19 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{Bu}$); HRMS (Cl) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{H} 307.1908$, found $307.1903(\mathrm{M}+\mathrm{H})$.
(S)-5-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-6-(phenylmethoxy)-2-hexen-1-ol 2,2-Dimethylpropanoate (65 a). $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(4.12 \mathrm{~g} \equiv 3.9 \mathrm{~mL}$, 15.0 mmol) was added to a stirred solution of alcohol $64 \mathrm{a}(3.50 \mathrm{~g}, 11.4$ mmol) and imidazole ($4.08 \mathrm{~g}, 60 \mathrm{mmol}$) in DMF (15 mL) at room
temperature under argon. The reaction mixture was stirred for 1.5 h and then it was diluted with ether (100 mL) and washed with water $(3 \times 10$ mL) and brine (10 mL). Drying (MgSO_{4}) followed by concentration and flash column chromatography (silica, 5% ether in petroleum ether) gave compound 65 a ($5.97 \mathrm{~g}, 96 \%$). 65a: colorless oil; $R_{f} 0.28$ (silica, 10% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}+1.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 1 R (film) $\nu_{\text {max }}$ 3065, 3040, 3025, 2960, 2930, 2890, 2859, 1730, 1585, 1478, 1470, 1460, $1452,1425,1392,1388,1360,1280,1150,1110,1025,1005,995,970$, 819, $735,698,602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.15(\mathrm{~m}$, 15 H , aromatic), 5.77 (dt, $J=15.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.42 (dt, J $=15.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $4.44\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{O}_{2} \mathrm{OC}(\mathrm{O})\right)$, $4.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.37(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.28\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allylic $\left.\mathrm{CH}_{2}\right), 1.19(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.05(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{Si}-t-B u)$.
(S)-5-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-6-(phenylmethoxy)-2-hexen-1-ol (66a). D1BAL ($8.0 \mathrm{~mL}, 1 \mathrm{M}$ solution in hexane, 8.0 mmol) was added to a cold $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of pivaloate ester 65 a (3.2 $\mathrm{g}, 5.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon. Stirring was continued for 0.5 h , and then the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with dilute aqueous HCl solution (25 mL), water (25 mL), and brine (10 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$ followed by concentration and flash column chromatography (silica, 50% ether in petroleum ether) gave allylic alcohol $66 \mathrm{a}\left(2.7 \mathrm{~g}, 87 \%\right.$). 66a: colorless oil; $R_{f} 0.5$ (silica, 85% ether in petroleum ether) $[\alpha]^{20}{ }_{\mathrm{D}}-3.7^{\circ}\left(c 1.8, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\text {max }}$ $3380,2925,2885,1428,1390,1360,1105,995,970,820,735,700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.20(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $5.55(\mathrm{~m}$, 2 H , olefinic), $4.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.93$ (m, $1 \mathrm{H}, \mathrm{CHO}), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.28\left(\mathrm{~m}, 2 \mathrm{H}\right.$, allylic $\left.\mathrm{CH}_{2}\right), 1.05(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{Si} \cdot t-\mathrm{Bu}$); HRMS (Cl) calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si} 460.2432$, found 460.2410 .

2,3-Anhydro-5-O-[(1,1-dimethylethyl)diphenylsilyl]-6-O-(phenyl-methyl)-D-arabino-hexitol (67a). To a stirred solution of $\mathrm{Ti}(i-\mathrm{PrO})_{4}$ $(1.37 \mathrm{~g}, 4.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added D-(-)-diethyltartrate ($996 \mathrm{mg}, 4.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under argon at $-20^{\circ} \mathrm{C}$. After stirring for 10 min at $-20^{\circ} \mathrm{C}$, allylic alcohol $66 \mathrm{a}(2.0 \mathrm{~g}, 4.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and $t-\mathrm{BuOOH}(3.2 \mathrm{~mL}, 3 \mathrm{M}$ in toluene, 9.7 mmol$)$ were sequentially added, and the mixture was kept at $-20^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was processed as described above for the conversion 14 $\rightarrow \mathbf{6 0}$, and the product was purified by flash column chromatography (silica, 40% ether in petroleum ether) leading to epoxide 67 a (1.24 g , 60%, ca 9:1 ratio of isomers). 67a: colorless oil; $R_{f} 0.23$ (silica, 50% ether in petroleum ether); $[\alpha]^{25}{ }_{\mathrm{D}}-1.2^{\circ}$ (ca. $9: 1$ mixture, $c 1.6, \mathrm{CHCl}_{3}$); 1 R (film) $\nu_{\max } 3430,2930,2890,2855,1427,1428,1390,1360,1190,1110$, $1070,905,818,730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (for major isomer only) $7.23-7.15(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $4.40,4.34$ (doublets, $J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.76(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.81(\mathrm{~m}, 1 \mathrm{H}$, CH epoxide), 2.79 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}$ epoxide), $1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77$ (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), $1.06(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; $\mathrm{HRMS}(\mathrm{CI})$ calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$ t - Bu 419.1677 , found $419.1719(\mathrm{M}-t$ - Bu).

2,4-Dideoxy-6-O-(phenylmethyl)-D-erythro-hexitol (13a). Epoxide 67a ($900 \mathrm{mg}, 1.89 \mathrm{mmol}$) was dissolved in dry THF (30 mL), and Red-Al (1 M in $\mathrm{THF}, 1.89 \mathrm{~mL}, 1.89 \mathrm{mmol}$) was added dropwise with stirring at room temperature under an argon atmosphere. After stirring for 1 h another portion of Red-Al ($1.89 \mathrm{~mL}, 1.89 \mathrm{mmol}$) was added, and stirring was continued for an additional 2 h . The reaction mixture was diluted with ether $(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then acidified with 10% aqueous HCl to pH 3 . The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ (3 mL), saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and brine $(3 \mathrm{~mL})$. The combined aqueous phase was neutralized and subjected to continuous extraction with ether for 12 h . The combined extract was dried (MgS O_{4}), concentrated, and purified by flash column chromatography (silica, 20% acetone in ether) to give triol 13a ($386 \mathrm{mg}, 85 \%$). 13a: colorless oil; $R_{f} 0.19$ (silica, $2.5 \% \mathrm{EtOH}$ in ether); $[\alpha]_{\mathrm{D}}^{20}-4.9^{\circ}\left(c 1.7, \mathrm{CHCl}_{3}\right)$; 1R (film) $\nu_{\max } 3360,3090,2940,2915,2860,1453,1365,1205,1100$, $840,740,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ ($\mathrm{s}, 5 \mathrm{H}$, aromatic), $4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.30-3.00(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{OH}), 4.13(\mathrm{~m}, 2$ $\mathrm{H}, \mathrm{CHO}), 3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.45$ (dd, $J=9.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.38 (dd, $J=9.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.58$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C} \mathrm{H}_{2}\right)$; $\mathrm{HRMS}(\mathrm{Cl})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}+\mathrm{H} 241.1439$, found $241.1429(\mathrm{M}+\mathrm{H})$.

2,4-Dideoxy-6-O-(phenylmethyl)-D-erythro -hexitol 1-(2,2-Dimethylpropanoate) (68a). A mixture of triol $13 \mathrm{a}(176 \mathrm{mg}, 0.73 \mathrm{mmol}$), 4(dimethylamino) pyridine (DMAP, $5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and trimethylacetyl chloride ($121 \mathrm{mg} \equiv 0.12 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in pyridine (7.3 mL) was stirred at room temperature under argon for 5 h . The mixture was diluted with ether (50 mL) and washed with water ($2 \times 5 \mathrm{~mL}$) and brine (5 mL). Drying (MgSO_{4}) and concentration followed by flash column chromatography (silica, 60% ether in petroleum ether) gave ester 68 a (208 mg , 88%). 68a: colorless oil; $R_{f} 0.48$ (silica, ether); $[\alpha]^{22}{ }_{\mathrm{D}}-3.1^{\circ}(c 1.6$,
CHCl_{3}); IR (film) $\nu_{\max } 3440,2965,2935,2910,2870,1726,1481,1455$, $1400,1365,1285,1162,1108,853,735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.23(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $4.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{PhCH} \mathrm{O}), 4.31$ (ddd, $J=11.3,7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})$), 4.13 (ddd, $J=11.3,5.6$, $\left.5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \mathrm{H}_{2} \mathrm{OC}(\mathrm{O})\right), 4.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO})$, $3.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.76(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$; HRMS (Cl) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{H} 325.2013$, found $325.2006(\mathrm{M}+\mathrm{H})$.

2,4-Dideoxy-3,5-O-(1-methylethylidene)-6-O-(phenylmethyl)-D-erythro-hexitol 1-(2,2-Dimethylpropanoate) (69). Diol 68 a ($196 \mathrm{mg}, 0.6$ mmol) and camphorsulfonic acid (CSA, $3 \mathrm{mg}, 0.012 \mathrm{mmol}$) were dissolved in 2,2-dimethoxypropane (2 mL) at room temperature under argon. The reaction mixture was stirred at that temperature for 30 min and then it was diluted with ether (30 mL) and washed with 10% aqueous NaHCO_{3} solution (2 mL) and brine (2 mL). Drying (MgSO_{4}) followed by flash column chromatography (silica, 10% ether in petroleum ether) gave acetonide $69(204 \mathrm{mg}, 93 \%)$. 69: colorless oil; $R_{f} 0.25$ (silica, 10% ether in petroleum ether); $[\alpha]^{20}{ }_{\mathrm{D}}-21.0^{\circ}\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (film) $\nu_{\text {max }}$ $2970,2955,2935,2910,2870,1728,1495,1479,1455,1378,1365,1281$, $1261,1200,1158,1110,735,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.36$ (s, 5 H , aromatic), $4.60,4.55$ (doublets, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{PhCH} 2 \mathrm{O}), 4.15\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right), 4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO})$, 3.98 (m, $1 \mathrm{H}, \mathrm{CHO}$), 3.51 (dd, $J=9.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.37 (dd, $\left.J=9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.78\left(\mathrm{dt}, J=6.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.54$ (dt, $J=12.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $1.44,1.40$ (singlets, 3 H each, acetonide), 1.33 (dt, $J=12.8,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 1.19 (s, $9 \mathrm{H}, t-B u$); HRMS (Cl) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}+\mathrm{H} 365.2326$, found 365.2279 .

2,4-Dideoxy-6-O-[(1,1-dimethylethyl)diphenylsilyl]-3,5-O. (1-methyl-ethylidene)-D-erythro -hexitol 1-(2,2-Dimethylpropanoate) (71) via Alcohol 70. Benzyl ether 69 ($481 \mathrm{mg}, 1.34 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), and $10 \% \mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ was added. The mixture was vigorously stirred under a H_{2} atmosphere at ambient temperature for 4 h (TLC monitoring). Removal of the catalyst by filtration followed by evaporation of the solvent gave essentially pure alcohol 70, which was dissolved in dry DMF (3 mL) and silylated without further purification as follows. Imidazole ($408 \mathrm{mg}, 6 \mathrm{mmol}$) and $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(412 \mathrm{mg} \equiv$ $0.40 \mathrm{~mL}, 1.5 \mathrm{mmol}$) were sequentially added under argon at $25^{\circ} \mathrm{C}$, and the reaction mixture was stirred at that temperature for 3 h . The reaction mixture was then diluted with ether (50 mL) and washed with water (2 $\times 10 \mathrm{~mL}$) and brine (5 mL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give an oily residue, which was flash chromatographed (silica, 10% ether in petroleum ether) to give derivative 71 (500 mg , 73%). 71: colorless oil; $R_{f} 0.30$ (silica, 20% ether in petroleum ether);

IR (film) $\nu_{\max } 3070,3045,2960,2930,2860,1729,1480,1471,1462$, $1427,1380,1283,1200,11445,1110,1055,1040,1005,995,739,700$ $\mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.65(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.45-7.32$ (m, 6 H , aromatic), $4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{O})\right.$), 3.97 (m, 2 H, CHO), $3.71\left(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.54(\mathrm{dd}, J=10.1$, $\left.6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.78\left(\mathrm{dt}, J=6.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.62(\mathrm{dt}, J$ $=12.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$) $, 1.39,1.35$ (singlets, 3 H each, acetonide), 1.21 (dt, $J=12.5,11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$) $, 1.20,1.06$ (singlets, 9 H each, $t-B u)$.

Preparation of Compound 47 from 71. Compound 47 was prepared from pivaloate ester 71 by DIBAL reduction as described above for the preparation of 66a from 65a. Used, 71 ($285 \mathrm{mg}, 0.56 \mathrm{mmol}$); obtained, $47(211 \mathrm{mg}, 91 \%)$. The spectral data of this material were identical with those of a sample obtained from (+)-xylose as described above.

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-1-O-(phenyl-methyl)-D-erythro-hexitol (68b). To a stirred solution of triol 13b (344 $\mathrm{mg}, 1.43 \mathrm{mmol}$) in DMF (2.5 mL) was added imidazole ($408 \mathrm{mg}, 6.00$ $\mathrm{mmol})$ and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(226 \mathrm{mg}, 1.50 \mathrm{mmol})$. Stirring was continued for 2 h at ambient temperature, and then the reaction mixture was diluted with ether (50 mL). The organic phase was washed with water (3×5 mL) and brine (5 mL), dried (MgSO_{4}), and concentrated. Purification by flash column chromatography (silica, 70% ether in petroleum ether) gave pure diol 68b ($457 \mathrm{mg}, 90 \%$). 68b: $R_{f} 0.21$ (70% ether in petroleum ether) ; $[\alpha]^{20}{ }_{\mathrm{D}}-3.7^{\circ}\left(c 2.8, \mathrm{CHCl}_{3}\right) ; \mathrm{R}($ film $) \nu_{\text {max }} 3420,3035,2955$, $2930,2860,1470,1460,1452,1390,1360,1309,1255,1092,1028,1005$, $938,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ ($\mathrm{s}, 5 \mathrm{H}$, aromatic), 4.56 (s, $2 \mathrm{H}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 4.08 (m, $3 \mathrm{H}, \mathrm{CHO}, \mathrm{OH}$), 3.87 (m, $3 \mathrm{H}, \mathrm{H}-1$, OH), 3.44 (m, $2 \mathrm{H}, \mathrm{H}-6$), $1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}-t-\mathrm{Bu})$, 0.08 (s, $6 \mathrm{H}, \mathrm{SiMe} e_{2}$); HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}+\mathrm{H} 355.2303$, found $355.2313(\mathrm{M}+\mathrm{H})$.

3,5-Dideoxy-6-O-[(1,1-dimethylethyl)dimethylsilyl]-2,4-O-(1-methyl-ethylidene)-1-O-(phenylmethyl)-D-erythro-hexitol (56). Compound 56 was prepared (95%) in the same manner as described for 69 from 68a and was identical by the usual criteria with a sample obtained from (-)-xylose.

Acknowledgment. We wish to express our many thanks to Drs. George Furst and John Dykins of this department for their superb NMR and mass spectroscopic assistance. This work was financially supported by the National Institutes of Health, Merck Sharp \& Dohme, and Hoffmann-La Roche.

Total Synthesis of Amphoteronolide B and Amphotericin B. 2. Total Synthesis of Amphoteronolide B^{\dagger}

K. C. Nicolaou,* R. A. Daines, T. K. Chakraborty, and Y. Ogawa
Contribution from the Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Received October 19, 1987

Abstract

The efficient coupling of building blocks 4-8 by four aldehyde-phosphonate type condensation reactions and an esterification reaction leading to advance intermediate keto phosphonate aldehyde 39 are reported. The intramolecular keto phosphonate-aldehyde condensation leading to heptaenone $\mathbf{3}$ and its elaboration to amphoteronolide B (1) are also described.

In the preceding paper ${ }^{1}$ we discussed the significance and retrosynthetic analysis of amphotericin B (1) and amphoteronolide B (2) (Scheme I) and the stereocontrolled construction of key building blocks 5-8 required for the total synthesis of these targets. In this paper we describe (a) the coupling of these building blocks and their elaboration to the cyclic heptaenone 3 (Scheme I), a key intermediate for the synthesis of both amphoteronolide B (2) and amphotericin $B(1)$, and (b) the total synthesis of amphoteronolide B (2). ${ }^{2.3}$

Results and Discussion

Synthesis of Advanced Key Intermediate, Hydroxy Aldehyde 15. The plan for the synthesis of advanced intermediate $\mathbf{1 5}$ from

[^7]aldehyde 5 involved construction of the polyene chain by sequential reaction with two units of phosphonate 4 (Scheme I). The details of the execution of this strategy are presented in Scheme II. Thus, condensation of 5 with the lithio derivative of $(E, E)-(E t O)_{2} \mathrm{P}$ $(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CHCOOEt}(4)^{4}$ led predominantly to the

[^8]
[^0]: This paper is dedicated with respect and affection to Professor E. J. Corey on the occasion of his 60th birthday.

[^1]: (1) For synthetic studies in this area by other groups see: (a) McGarvey, G. J.; Williams, J. M.; Hiner, R. N.; Matsubara, Y.; Taeboem, O. J. Am. Chem. Soc. 1986, 108, 4943. (b) Boscheli, D.; Takemasa, T.; Nishitani, Y.; Masamune, S. Tetrahedron Lett. 1985, 26, 5239. (c) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfield, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183. (d) Masamune, S.; Ma, P.; Okumoto, H.; Ellingboe, J. W. J. Org. Chem. 1984, 49, 2843. (e) Ma, P.; Martin, V. S.;' Masamune, S.; Sharpless, K. B.; Viti, S. M. J. Org. Chem. 1982, 47, 1378. (f) Masamune, S.; Kaiho, T.; Garvey, D. S. J. Am. Chem. Soc. 1982, 104, 5521. (g) Liang, D.; Pauls, H. W.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1984, 1123. (h) Lipshutz, B. H.; Koslowski, J. A. J. Org. Chem. 1984, 49, 1147. (i) Hirama, M.; Vie, M. Tetrahedron Lett. 1982, $23,5307$. (j) Brookes, D. W.; Kellogg, R. P. Tetrahedron Lelt. 1982, 23, 4991. (k) Floyd, D. M.; Fritz, A. W. Tetrahedron Lett. 1981, 22, 2847. Hanessian, S.; Sahoo, S. P.; Murray, P. J. Tetrahedron Lett. 1985, 26, 5631. (1) Hanessian, S.; Sahoo, S. P.; Botta, M. Tetrahedron Lett. 1987, 28, 1143 and 1147. (m) Hanessian, S.; Botta, M. Tetrahedron Lett. 1987, 28, 1151. (n) Solladie, G.; Hutt, J.; Frechou, C. Tetrahedron Lett. 1987, $28,797$.
 (2) Nicolaou, K. C.; Chakraborty, T. K.; Ogawa, Y.; Daines, R. A.; Simpkins, N. S.; Furst, G. T. J. Am. Chem. Soc., preceding paper in this issue. (3) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Chakraborty, T. K.; Ogawa, Y. J. Am. Chem. Soc., accompanying paper in this issue.
 (4) Nicolaou, K. C.; Daines, R. A.; Ogawa, Y.; Chakraborty, T. K. J. Am. Chem. Soc., accompanying paper in this issue.
 (5) Preliminary communication: Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc. 1987, 109, 2205.
 (6) For reviews on methods of constructing medium and macrolactones see: (a) Nicolaou, K. C. Tetrahedron 1977, 33, 683. (b) Back, T. G. Tetrahedron 1977, 33, 3041. Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. 1977. 16, 585. Paterson, I.; Mansuri, M. M. Tetrahedron 1985, 41, 3569.

[^2]: (7) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. R. J. Am. Chem. Soc. 1982, 104, 2030.

[^3]: (8) For excellent recent reviews on the Sharpless asymmetric epoxidation reaction see: Rossiter, B. E. (pp 193) and Finn, M. G.; Sharpless, K. B. (pp 247) In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: New York, 1985; Vol. 5.

[^4]: (9) Nicolaou, K. C.; Papahatjis, D. P.; Claremon, D. A.; Magolda, R. L.; Dolle, R. E. J. Org. Chem. 1985, 50, 1440. See also ref 23.
 (10) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, I03, 2127.
 (11) Precise stereochemistry of the minor isomer of $\mathbf{1 8}$ was not assigned.
 (12) For an excellent review on the Evans stereoselective aldol condensation, see: Evans, D. A.; Nelson, J. V.; Taber, T. J. In Topics in Stereochemistry; Allinger, N. L., Eliel, E. L., Wilen, S. H., Eds.; 1982; Vol. 13, p 1.
 (13) Suzuki, T.; Saimoto, H. I.; Tomioka, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 3597

[^5]: (22) Preliminary communication: Nicolaou, K. C.; Uenishi, J. J. Chem. Soc., Chem. Commun. 1982, 1292.

[^6]: (23) Klunder, J. M.; Ko, S. Y.; Sharpless, K. B. J. Org. Chem. 1986, 51, 3710.

[^7]: ${ }^{\dagger}$ This paper is dedicated with respect and affection to Professor E. J. Corey on the occasion of his 60 th birthday.

[^8]: (1) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc., preceding paper in this issue.
 (2) Preliminary communication: Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K. J. Am. Chem. Soc. 1987, 109, 2208. Apparently migration of the acetonide group occurred under the reaction conditions ($27 \rightarrow \mathbf{2 8} \rightarrow \mathbf{2 9}$). We thank Professor S. Masamune for bringing this possibility to our attention in the form of a manuscript: Kennedy, R. M.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1988, 29, 447. See also: Kennedy, R. M.; Abili, A; Takemasa, T.; Okumoto, H.; Masamune, S. Tetrahedron Lett. 1988, 29, 451.
 (3) Preliminary communication: Nicolaou, K. C.; Chakraborty, T. K.; Daines, R. A.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1986, 413.

